Journal of Materials Science

, Volume 42, Issue 18, pp 7772–7779 | Cite as

High electrical conductivity and high corrosion resistance fibers with high modulus and high strength prepared by electroless plating of gold on the surface of poly (p-phenylene benzobisoxazole) (PBO)

  • Hisako Ishikawa
  • Qingyun Chen
  • Yuezhen Bin
  • Kaori Komatsu
  • Masaru MatsuoEmail author


In an attempt to produce glittering gold fibers with high modulus and high strength, gold plating on the surface of poly(p-phenylene benzobisoxazole) (PBO) fibers was carried out by using an electroless plating method. Due to the difficulty in plating gold directly on organic and inorganic fibers, gold plating was carried out on the surface of copper-plated and nickel-plated fibers; for the latter the nickel was plated on the copper-plated fibers. Namely, composite fibers, termed PBO/Cu/Au and PBO/Cu/Ni/Au, were prepared. The morphology of plated fibers was studied by X-ray diffraction, scanning electron microscopy with energy dispersive spectroscopy and electrochemical polarization measurements. It was found that gold was uniformly plated on the PBO fiber, and the gold-plated fibers have good corrosion resistance. The electrical conductivities of the two kinds of gold-plated fibers were higher than 4 × 104 S/cm, and their tensile strengths and Young’s moduli were greater than 1.9 GPa and 130 GPa, respectively, when estimated in terms of a single composite fiber.


Gold Particle Composite Fiber Immersion Time Gold Layer Electroless Plating 


  1. 1.
    Post ER, Orth M, Russo PR, Gershenfeld N (2000) IBM Syst J 39:840CrossRefGoogle Scholar
  2. 2. (2006)Google Scholar
  3. 3.
    Orth M, Gorbet M (1999) US5941714, US PatentGoogle Scholar
  4. 4.
    Post R, Orth M, Copper E, Smith J (2001) US6210771, US PatentGoogle Scholar
  5. 5.
    Marrin T, Paradiso J, Machover T, Verplaetse C, Orth M (1999) US5875257, US PatentGoogle Scholar
  6. 6.
    Jenkins D (2003) The Cambridge history of western textiles. Cambridge University Press, Cambridge, UK, p 859Google Scholar
  7. 7.
    Ma X, Lun N, Wen S (2005) Diamond Relat Mater 14:68CrossRefGoogle Scholar
  8. 8.
    Iacovangelo CD (1991) J Electrochem Soc 138(4):976CrossRefGoogle Scholar
  9. 9.
    Sullivan AM, Kohl PA (1995) J Electrochem Soc 142(7):2250CrossRefGoogle Scholar
  10. 10.
    Kato M, Sato J, Otani H, Homma T, Okinaka Y, Osaka T, Yoshioka O (2002) J Electrochem Soc 149:C164CrossRefGoogle Scholar
  11. 11.
    Sato J, Kato M, Otani H, Homma T, Okinaka Y, Osaka T, Yoshioka O (2002) J Electrochem Sco 149:C168CrossRefGoogle Scholar
  12. 12.
    Titagawa T, Murase H, Yabuki K (1998) J Polym Sci B 36:39Google Scholar
  13. 13.
    Fratinni AV, Lenhert PG, Resch TJ, Adams WW (1999) Mat Res Symp Proc 134:431CrossRefGoogle Scholar
  14. 14.
    Liu D, Hu J, Zhao Y, Zhou X, Ning P, Wang Y (2006) J Appl Poly Sci 102:1428CrossRefGoogle Scholar
  15. 15.
    Tooru K, Hiroki M, Kazuyuki Y (1998) J Polym Sci Part B 36:39Google Scholar
  16. 16.
    Tomlin DW, Fratini AV, Hunsaker M et al (2000) Polymer 41:9003CrossRefGoogle Scholar
  17. 17.
    Davies RJ, Montes-Moran MA, Riekel C, Young RJ (2001) J Mater Sci 36:3079CrossRefGoogle Scholar
  18. 18.
    Park JM, Kim DS, Kim SR (2003) J Colloid Interface Sci 264:431CrossRefGoogle Scholar
  19. 19.
    Krause SJ, Haddock TB, Vezie DL, Lenhert PG, Hwang WF, Price GE, Helminiak TE, O’Brien JF, Adams WW (1988) Polymer 29:1354CrossRefGoogle Scholar
  20. 20.
    Martin DC, Thomas EL (1991) Macromolecules 24:2450CrossRefGoogle Scholar
  21. 21.
    Kumar S, Warner S, Grubb DT, Adams WW (1994) Polymer 35:5408CrossRefGoogle Scholar
  22. 22.
    Hunsaker ME, Price GE, Bai SJ (1992) Polymer 33:2128CrossRefGoogle Scholar
  23. 23.
    Bai SJ, Price GE (1992) Polymer 33:2136CrossRefGoogle Scholar
  24. 24.
    Matsuoka M, Iwakura C (1992) J Electrochem Soc 139:2466CrossRefGoogle Scholar
  25. 25.
    Caturla F, Molina F, Molina-Sabio M, Rodriguez R (1995) J Electrochem Soc 142:4084CrossRefGoogle Scholar
  26. 26.
    Park SJ, Jang YS, Rhee KY (2002) J Colloid Interface Sci 245:383CrossRefGoogle Scholar
  27. 27.
    Kong Y, Chen H, Wang Y, Soper SA (2006) Electrophoresis 27:2940CrossRefGoogle Scholar
  28. 28.
    Guan F, Chen M, Yang W, Wang J, Yong S, Xue Q (2005) Appl Surf Sci 240:24CrossRefGoogle Scholar
  29. 29.
    Vorobyova TN, Poznyak SK, Rimskaya AA, Vrublevskaya ON (2004) Surf Coat Technol 176:327CrossRefGoogle Scholar
  30. 30.
    Iacovangelo CD, Zarnoch KP (1991) J Electrochem Soc 138:983CrossRefGoogle Scholar
  31. 31.
    Yamashita Y, Kawabata S, Okada S, Tanaka A (2001) In: Proceeding of the 30th textile research symposium at Fuji in the New Millennium, Shizuoka, p 219Google Scholar
  32. 32.
    Kawabata S, Kotani T, Yamashita Y (1995) J Tex Inst 86(2):347CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Hisako Ishikawa
    • 1
  • Qingyun Chen
    • 1
  • Yuezhen Bin
    • 1
  • Kaori Komatsu
    • 1
  • Masaru Matsuo
    • 1
    Email author
  1. 1.Department of Textile and Apparel Science, Faculty of Human Life and EnvironmentNara Women’s UniversityNaraJapan

Personalised recommendations