Advertisement

Journal of Materials Science

, Volume 42, Issue 18, pp 7832–7842 | Cite as

Power generation of the touching Cu/Bi-Te/Cu composites under the periodically alternating temperature gradients

  • Osamu YamashitaEmail author
  • Hirotaka Odahara
  • Takahiro Ochi
Article

Abstract

The thermo-emf ΔV of the touching p- and n-type Cu/Bi-Te/Cu composites with different thicknesses of tBi-Te and tCu was measured as a function of time by alternating the temperature difference ΔT at periods of T = 20, 60, 120, 240 and ∞ sec, where tBi-Te was varied from 0.1 to 2.0 mm and tCu from 0 to 4.0 mm. As a result, ΔV changes significantly with tBi-Te, tCu and T. The effective thermo-emf ΔVeff increases significantly with an increase of 1/T and exhibited a local maximum at 1/T = 1/240 s−1. The resultant | α | and the effective temperature difference ΔTeff were increased significantly by optimizing tBi-Te and tCu at 1/T = 1/240 s−1. The power generation ΔWeff (= ΔV eff 2 /4Rcalc) estimated using the measured ΔVeff and calculated Rcalc also exhibited a local maximum at 1/240 s−1 for an optimum combination of tBi-Te =  0.1 mm and tCu =  2.0 mm, so that the maxima ΔWeff at 1/T =  1/240 s−1 for the p- and n-type composites were 2.28 and 2.92 times higher than those obtained at 1/T = 0 s−1. This significant increase in ΔWeff is owing to both the increase in ΔTeff and the increase in ZT due to the increase in |α|. The power generation was thus found to be enhanced significantly by imposing the alternating temperature gradients on touching Cu/Bi-Te/Cu composites.

Keywords

Seebeck Coefficient Thermoelectric Material Energy Conversion Efficiency Thermoelectric Generator Contact Electric Resistance 

References

  1. 1.
    Wood C (1988) Prog Phys 51:459CrossRefGoogle Scholar
  2. 2.
    Mahan G, Sales B, Sharp J (1997) Phys Today 50:42CrossRefGoogle Scholar
  3. 3.
    Hicks LD, Dresselhaus MS (1993) Phys Rev B 47:12727CrossRefGoogle Scholar
  4. 4.
    Hicks LD, Harman TC, Dresselhaus MS (1993) Appl Phys Lett 63:3230CrossRefGoogle Scholar
  5. 5.
    Broido DA, Reinecke TL (1995) Appl Phys Lett 67:1170CrossRefGoogle Scholar
  6. 6.
    Goldsmid HJ (1964) Thermoelectric refrigeration. Plenum, New YorkCrossRefGoogle Scholar
  7. 7.
    Koga T, Rabin O, Dresselhaus MS (2000) Phys Rev B 62:16703CrossRefGoogle Scholar
  8. 8.
    Venkatasubramanian R, Siivola E, Colpitts T, O’Quinn B (2001) Nature 413:597CrossRefGoogle Scholar
  9. 9.
    Bergman DJ, Levy O (1991) J Appl Phys 70:6821CrossRefGoogle Scholar
  10. 10.
    Tauc J (1953) Czechosl J Phys 3:282CrossRefGoogle Scholar
  11. 11.
    Balmush II, Dashevsky ZM, Kasiyan AI (1995) Semiconductors 29:937Google Scholar
  12. 12.
    Yamashita O, Odahara H, Satou K (2005) J Mater Sci 40:1071. DOI: 10.1007/s10853-005-6919-zCrossRefGoogle Scholar
  13. 13.
    Yamashita O, Satou K, Odahara H, Tomiyoshi S (2005) J Appl Phys 98:073707CrossRefGoogle Scholar
  14. 14.
    Odahara H, Yamashita O, Satou K, Tomiyoshi S, Tani J, Kido H (2005) J Appl Phys 97:103722CrossRefGoogle Scholar
  15. 15.
    Yamashita O, Odahara H (2006) J Mater Sci 41:2795. DOI: 10.1007/s10853-006-6133-7CrossRefGoogle Scholar
  16. 16.
    Yamashita O, Odahara H (2005) J Mater Sci (accepted)Google Scholar
  17. 17.
    Yamashita O, Tomiyoshi S (2004) J Appl Phys 95:6277CrossRefGoogle Scholar
  18. 18.
    Yamashita O, Tomiyoshi S (2004) J Appl Phys 95:161CrossRefGoogle Scholar
  19. 19.
    Yim WM, Rosi FD (1972) Solid State Electron 15:1121CrossRefGoogle Scholar
  20. 20.
    Kittel C (1996) Introduction to solid state physics. John Wiley & Sons, New YorkGoogle Scholar
  21. 21.
    Harman TC (1958) J Appl Phys 29:1373CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Osamu Yamashita
    • 1
    Email author
  • Hirotaka Odahara
    • 2
  • Takahiro Ochi
    • 3
  1. 1.Materials Science, Co., LtdOsakaJapan
  2. 2.Advanced Materials, Co., LtdOsakaJapan
  3. 3.Faculty of EngineeringEhime UniversityBunkyocho, MatsuyamaJapan

Personalised recommendations