Advertisement

Journal of Materials Science

, Volume 42, Issue 18, pp 7794–7800 | Cite as

Welding of Al-359/20%SiCp metal matrix composites by the novel MIG process with indirect electric arc (IEA)

  • Rafael García
  • Victor H. López
  • Andrew R. Kennedy
  • Gabriel Arias
Article

Abstract

An Al-based composite reinforced with 20%SiCp was welded using the MIG welding process with direct and indirect application of the electric arc (DEA and IEA respectively). The welds were made on 12.5 mm thick plates in three welding passes for the DEA joint whereas only one pass was required for the IEA joint. Microstructural examination of the joints revealed DEA welds with light signs of matrix/reinforcement reaction whilst in the IEA welds the SiC particles remained with their initial angular morphology. Mechanical failure occurred consistently and independently of the type of joint in the weld zone and the measured strengths were 209 and 234 MPa for DEA and IEA welds respectively. The greater strength measured for the IEA weld was due to reduced porosity and good incorporation and dispersion of the SiC particles into the weld pool.

Keywords

Welding Weld Metal Heat Input Weld Pool Welding Speed 

Notes

Acknowledgements

The authors would like to thank Coordinación de la Investigación Científica of the UMSNH for funding this study and to Juan Jose Uribe Galan from Instituto Tecnologico de Morelia for the facilities consented in the use of the Mitutoyo video line indenter.

References

  1. 1.
    Miracle DB (2005) Compos Sci Technol 65:2526CrossRefGoogle Scholar
  2. 2.
    Ahearn JS, Cooke C, Fishman SG (1982) Met Constr 14:192Google Scholar
  3. 3.
    Lloyd DJ (1989) Compos Sci Technol 35:159CrossRefGoogle Scholar
  4. 4.
    Viala JC, Fortier P, Bouix J (1990) J Mater Sci 25:1842CrossRefGoogle Scholar
  5. 5.
    Viala JC, Bosselet F, Laurent V, Lepetitcorps Y (1993) J Mater Sci 28:5301CrossRefGoogle Scholar
  6. 6.
    Aksenov AA, Belov NA, Medvedeva SV (2001) Z Metallkd 92:1103Google Scholar
  7. 7.
    Lienert JT, Brandon ED, Lippold JC (1993) Scripta Metall Mater 28:1341CrossRefGoogle Scholar
  8. 8.
    Bonollo F, Tiziani A, Penasa M (2002) Int J Mater Product Technol 17:291CrossRefGoogle Scholar
  9. 9.
    Ureña A, Escalera MD, Gil L (2000) Compos Sci Technol 60:613CrossRefGoogle Scholar
  10. 10.
    Garcia R, Lopez VH, Bedolla E, Manzano A (2002) J Mater Sci Let 21:1965CrossRefGoogle Scholar
  11. 11.
    Garcia R, Lopez VH, Bedolla E, Manzano A (2003) J Mater Sci 38:2771CrossRefGoogle Scholar
  12. 12.
    Garcia R, Lopez VH (2006) J Mater Sci,  https://doi.org/10.1007/s10853-006-1287-x CrossRefGoogle Scholar
  13. 13.
    Natividad C, Salazar M, Garcia R, Gonzalez-Rodriguez JG, Perez R (2006) Corrosion Eng Sci Technol 41:91CrossRefGoogle Scholar
  14. 14.
    Altshuller B, Christy W, Wiskel B (1990) In: Patterson RA, Mahin KW (eds) Weldability of materials. ASM International, Detroit, Michigan, USA, 305 ppGoogle Scholar
  15. 15.
    Gowri S, Samuel FH (1992) Metall Trans A 23A:3369Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Rafael García
    • 1
  • Victor H. López
    • 1
  • Andrew R. Kennedy
    • 2
  • Gabriel Arias
    • 1
  1. 1.Instituto de Investigaciones MetalúrgicasUniversidad Michoacana de San Nicolás de HidalgoMoreliaMexico
  2. 2.Advanced Materials Research Group, School of Mechanical, Materials and Manufacturing EngineeringUniversity of NottinghamNottinghamUK

Personalised recommendations