Advertisement

Journal of Materials Science

, Volume 42, Issue 18, pp 7757–7761 | Cite as

Fabrication and characterization of Ge nanocrystalline growth by ion implantation in SiO2 matrix

  • S. N. M. Mestanza
  • I. Doi
  • J. W. Swart
  • N. C. Frateschi
Article

Abstract

Ge nanocrystallites (Ge-nc) have been formed by ion implantation of Ge+74 into SiO2 matrix, thermally grown on p-type Si substrates. The Ge-nc are examined by Raman spectroscopy, photoluminescence (PL) and Fourier transform infrared spectroscopy (FTIR). The samples were prepared with various implantation doses [0.5; 0.8; 1; 2; 3; 4] × 1016 cm−2 with 250 keV energy. After implantation, the samples were annealed at 1,000 °C in forming gas atmosphere for 1 h. Raman intensity variation with implantation doses is observed, particularly for the peak near 304 cm−1. It was found that the sample implanted with a doses of 2 × 1016 cm−2 shows maximum photoluminescence intensity at about 3.2 eV. FTIR analysis shows that the SiO2 film moved off stoichiometry due to Ge+74 ion implantation, and Ge oxides are formed in it. This result is shown as a reduction of GeOx at exactly the doses corresponding to the maximum blue-violet PL emission and the largest Raman emission at 304 cm−1. This intensity reduction can be attributed to a larger portion of broken Ge–O bonds enabling a greater number of Ge atoms to participate in the cluster formation and at the same time increasing the oxygen vacancies. This idea would explain why the FTIR peak decreases at the same implantation doses where the PL intensity increases.

Keywords

SiO2 Film Implantation Dose SiO2 Matrix Germanium Oxide Integrate Circuit Technology 

Notes

Acknowledgment

The authors would like to acknowledge Dr M. Behar of IF/UFRGS for his help with ion implantation, Dr J. M. J. Lopez for his help with the PL measurements and Dr E. Granado and A. Garcia, IFGW/UNICAMP, for the Raman spectroscopy measurements. This work was supported by the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPQ).

References

  1. 1.
    Giri PK, Kesavamoorthy R, Panigrahi BK, Nair KGM (2005) Solid State Commun 133:229CrossRefGoogle Scholar
  2. 2.
    Rebohle L, Von Borany J, Yankov RA, Skorupa W, Tyschenko IE, Frob H, Leo K (1997) Appl Phys Lett 71:2809CrossRefGoogle Scholar
  3. 3.
    Choi WK, China WK, Heng CL, Teo LW, Ho V, Ng V, Antoniadis DA, Fitzgerald EA (2002) Appl Phys Lett 80:2014CrossRefGoogle Scholar
  4. 4.
    Pavesi L, Dal Negro L, Mazzoleni C, Franzo G, Priolo F (2000) Nature 408:440CrossRefGoogle Scholar
  5. 5.
    Bostedt C, Van Burren T, Willey TM, Franco N, Terminello LJ, Heske C, Moller T (2004) Appl Phys Lett 84:4056CrossRefGoogle Scholar
  6. 6.
    Yoshida T, Takeyama S, Yamada Y, Mutoh K (1996) Appl Phys Part 1 35:94CrossRefGoogle Scholar
  7. 7.
    Marins ES, Mestanza SNM, Doi I (2006) Mater Sci Semiconduct Process 9:828CrossRefGoogle Scholar
  8. 8.
    Giri PK, Kesavamoorthy R, Panigrahi BK, Nair KGM (2006) Nucl Instr Meth Phys Res B 244:56CrossRefGoogle Scholar
  9. 9.
    Hayashi S, Fujii M, Yamamoto K (1989) Jpn J Appl Phys 28 part I:1464CrossRefGoogle Scholar
  10. 10.
    Zhu JG, White CW, Budai JD, Withrow SP, Chen Y (1995) J Appl Phys 78:4386CrossRefGoogle Scholar
  11. 11.
    Wu XL, Gao T, Yan F, Jiang SS, Feng D (1997) J Appl Phys 82:2704CrossRefGoogle Scholar
  12. 12.
    Kolobov AV (2000) J Appl Phys 87:2926CrossRefGoogle Scholar
  13. 13.
    Wellner A, Paillard V, Bonafos C, Coffin H, Claverie A, Schmidt B, Heining KH (2003) J Appl Phys 94:5639CrossRefGoogle Scholar
  14. 14.
    Fujii M, Hayashi S, Yamamoto K (1990) Appl Phys Lett 57:2692CrossRefGoogle Scholar
  15. 15.
    Lee WS, Jeong JY, Kim HB, Chae KH, Whang CN, Im S, Song JH (2000) Mater Sci Eng B 69–70:474CrossRefGoogle Scholar
  16. 16.
    Gallagher M, Österberg U (1993) Appl Phys Lett 63:2987CrossRefGoogle Scholar
  17. 17.
    Zhang JY, Wu XL, Bao XM (1997) Appl Phys Lett 71:2505CrossRefGoogle Scholar
  18. 18.
    Wu XL, Gao T, Siu GG, Tong S, Bao XM (1999) Appl Phys Lett 74:2420CrossRefGoogle Scholar
  19. 19.
    Skorupa W, Rebolhe L, Gebel T (2003) Appl Phys A 76:1049CrossRefGoogle Scholar
  20. 20.
    Zhang JY, Bao XM, Ye YH (1998) Thin Solid Films 323:68CrossRefGoogle Scholar
  21. 21.
    Pai PG, Chao SS, Takagi Y, Lucovsky G (1986) J Vac Sci Technol A 4:689CrossRefGoogle Scholar
  22. 22.
    Zacharias M, Blasing J (1995) Phys Rev B 52:14018CrossRefGoogle Scholar
  23. 23.
    Alayo MI, Pereyra I, Scopel WL, Fantini MCA (2002) Thin Solid Films 402:154CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • S. N. M. Mestanza
    • 1
  • I. Doi
    • 1
  • J. W. Swart
    • 1
  • N. C. Frateschi
    • 1
    • 2
  1. 1.Center for Semiconductor ComponentsState University of CampinasCampinasBrazil
  2. 2.Department of Applied Physic, Institute of Physic Gleb-WataghingState University of CampinasCampinasBrazil

Personalised recommendations