Journal of Materials Science

, Volume 42, Issue 18, pp 7819–7826 | Cite as

Internal friction of Niobium–Titanium–Oxygen alloys

  • L. M. YuEmail author
  • F. X. Yin


The compositional and temperature dependence of the anelastic relaxation behavior in Nb–Ti–O alloys have been investigated. Using a fitting method, the complicated relaxation spectra were resolved into several elementary Debye peaks, which corresponded to the reorientation transitions of O atoms at different octahedral interstitial sites. The number of the peaks depended upon the Ti concentration. The calculation results of the site energies show that the interstitial oxygen atoms preferentially occupy the octahedral interstitial site, which has nearest-neighbor Ti substitutional atoms. Therefore, substitutional Ti solutes will markedly influence the Snoek relaxation behavior in Nb-Ti-O ternary system, even if the concentration of Ti is rather low.


Internal Friction Interstitial Atom Elementary Peak Matrix Atom Octahedral Interstitial Site 


  1. 1.
    Nowick AS, Berry BS (1972) Anelastic relaxation in crystalline solids. Academic Press, New York, Chapter 9 and 11.Google Scholar
  2. 2.
    Yin FX, Iwasaki S, Ping DH, Nagai K (2006) Adv Mater 18:1541CrossRefGoogle Scholar
  3. 3.
    Dijkstra LJ, Sladek RJ (1953) Trans Metall AIME 197:69Google Scholar
  4. 4.
    Berry BS (1962) Acta Metall 10:271CrossRefGoogle Scholar
  5. 5.
    Nowick AS, Heller WR (1963) Adv Phys 12:251CrossRefGoogle Scholar
  6. 6.
    Koiwa M (1971) Philos Mag 24:81CrossRefGoogle Scholar
  7. 7.
    Blanter MS, Fradkov MY (1992) Acta Metall Mater 40:2201CrossRefGoogle Scholar
  8. 8.
    Ahmad MS, Szkopiak ZC (1970) J Phys Chem Solids 31:1799CrossRefGoogle Scholar
  9. 9.
    Weller M, Zhang JX, Li GY, Ke TS, Diehl J (1981) Acta Metall 29:1055CrossRefGoogle Scholar
  10. 10.
    Szkopiak ZC, Smith JT (1975) J Phys D 8:1273CrossRefGoogle Scholar
  11. 11.
    Cantelli R, Szkopiak ZC (1976) Appl Phys 9:153CrossRefGoogle Scholar
  12. 12.
    Florencio O, Botta WJ, Grandini CR, Tejima H, Jordao JAR (1994) J Alloy Compd 211/212:37CrossRefGoogle Scholar
  13. 13.
    Almeida LH, Niemeyer TC, Pires KCC, Grandini CR, Pintao CAF, Florencio O (2004) Mat Sci Eng A 370:96CrossRefGoogle Scholar
  14. 14.
    Niemeyer TC, Grandini CR, Florencio O (2005) Mat Sci Eng A 396:285CrossRefGoogle Scholar
  15. 15.
    Morita A, Fukui H, Tadano H, Hayashi S, Hasegawa J, Niinomi M (2000) Mat Sci Eng A 280:208CrossRefGoogle Scholar
  16. 16.
    Wert C, Marx J (1953) Acta Metall 1:113CrossRefGoogle Scholar
  17. 17.
    Golovin IS, Neuhauser H, Riviere A (2004) Intermetall 12:125CrossRefGoogle Scholar
  18. 18.
    Kushnareva NP, Pecherskii VS (1984) Ind Lab 50(4):371Google Scholar
  19. 19.
    Gridnev VN, Kushnareva NP, Pecherskii VS, Yakovenko PG (1983) Phys Met Metall 56:93Google Scholar
  20. 20.
    Florencio O, Grandini CR, Botta WJ, Guedes PR, Silva PS (2004) Mat Sci Eng A 370:131CrossRefGoogle Scholar
  21. 21.
    Kushnareva NP, Snejko SE, Yarosh IP (1995) Acta Metall Mater 43:4393CrossRefGoogle Scholar
  22. 22.
    Beshers DN (1965) J Appl Phys 36:290CrossRefGoogle Scholar
  23. 23.
    Biscarini A, Coluzzi B, Mazzolai FM (1999) Def Diff Forum 165–166:1Google Scholar
  24. 24.
    Mosher D, Dollins C, Wert C (1970) Acta Metall 18:797CrossRefGoogle Scholar
  25. 25.
    Indrawirawan H, Buck O, Carlson ON (1987) Phys Stat Sol (a) 104:443CrossRefGoogle Scholar
  26. 26.
    Kushnareva NP, Snejko SE (1994) J Alloy Compd 211/212:75CrossRefGoogle Scholar
  27. 27.
    Gondi P, Montanari R (1992) Phys Stat Sol (a) 131:465CrossRefGoogle Scholar
  28. 28.
    Pick MA, Shapiro SM, Stoneham AM (1986) J Phys F 16:961CrossRefGoogle Scholar
  29. 29.
    Lauf RJ, Alstetter CJ (1979) Acta Metall 27:1157CrossRefGoogle Scholar
  30. 30.
    Brouwer RC, Griessen R (1989) Phys Rev B 40:1481CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Innovative Materials Engineering LaboratoryNational Institute for Materials ScienceTsukubaJapan

Personalised recommendations