Advertisement

Journal of Materials Science

, Volume 42, Issue 16, pp 6532–6540 | Cite as

On the structure and surface properties of NiO/MgO–La2O3 catalyst: Influence of the support composition and preparation method

  • Sergio L. González-CortésEmail author
  • Ismael Aray
  • Serbia M. A. Rodulfo-Baechler
  • Claudio A. Lugo
  • Hector L. Del Castillo
  • Alfonso Loaiza-Gil
  • Freddy E. Imbert
  • Humberto Figueroa
  • Wilfredo Pernía
  • Alfonso Rodríguez
  • Oduber Delgado
  • Rodrigo Casanova
  • Juan Mendialdua
  • Fulgencio Rueda
Article

Abstract

This work addresses the effect of catalyst preparation method and the carrier compositions (MgO–La2O3) over the NiO-support interaction, which affect the reducibility, textural properties and the different oxygen species chemisorbed at different temperatures over MgO–La2O3 supported NiO catalysts. The materials were prepared by wet sequential impregnation and wet co-impregnation with different Mg molar fractions [Mg/(La+Mg)]. The samples were characterized by X-ray diffraction (XRD), temperature-programmed reduction (TPR), infrared (IR) spectroscopy, scanning electron microscopy (SEM), changes of surface potential and BET surface area measurements. The total oxidation of methane was use as model reaction. It has been found that the catalyst formulations (i.e. NiO/MgO–La2O3) and the preparation methods not only affect the interaction among the catalyst components, but also the texture and material morphology as a result of different degrees of particle aggregation. The wet sequential impregnation-prepared catalysts showed a stronger MgO–La2O3 interaction than wet co-impregnation-prepared samples. A marked tendency of NiO to react with MgO rather than La2O3 following a mechanism of lattice substitution is observed. Mg-free catalyst showed LaNiO3 and NiO as major crystalline Ni-containing phases. The ternary Ni–Mg–La–O system, on the other hand, facilitates the formation of poorly reducible Ni phase, whereas the La-free catalyst (i.e. NiO/MgO) displayed the lowest content of Ni-reducible phase, owing to the formation of Ni1−xMgxO solid solution. Measurements of surface potential changes together with catalytic studies suggest that La-containing catalysts present oxygen vacancies, which markedly affect the chemical nature of the surface oxygen species and hence their catalytic behaviour.

Keywords

La2O3 Temperature Program Reduction LaNiO3 Lanthanum Oxide Lanthanum Hydroxide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgement

This work was financially supported by FONACIT (project No. S1-2000000814). I.A., C.A.L., H.F., W.P. and O.D. thank to CDCHT for funding.

References

  1. 1.
    Scharz JA, Contescu C, Contescu A (1995) Chem Rev 95:477CrossRefGoogle Scholar
  2. 2.
    Che M, Clause O, Marcilly Ch (1999) In: Preparation of solid catalysts, Gerhard E, Knozinger H, Helmut W (eds) Wiley-VCH, Weinheim, p 315Google Scholar
  3. 3.
    Amenomiya Y, Birss VI, Goledzinowski M, Galuska J, Sanger AR (1990) Catal Rev-Sci Eng 32:163CrossRefGoogle Scholar
  4. 4.
    Zhang Z, Verykios XE, J Chem Soc, Chem Commun (1995) 71Google Scholar
  5. 5.
    Hu Y-H, Ruckenstein E (1997) Catal Lett 43:71CrossRefGoogle Scholar
  6. 6.
    Requies J, Cabrero MA, Barrio VL, Güemez MB, Cambra JF, Arias PL, Pérez-Alonso FJ, Ojeda M, Pena MA, Fierro JLG (2005) Appl Catal A:Gen 289:214CrossRefGoogle Scholar
  7. 7.
    Zhang X, Walters AB, Vannice MA (1994) J Catal 146:568CrossRefGoogle Scholar
  8. 8.
    Arai H, Yamada T, Eguchi K, Seiyama T (1986) Appl Catal 26:265CrossRefGoogle Scholar
  9. 9.
    Klvana D, Kirchnerova J, Chaouki J, Delval J, Yaïci W (1999) Catal Today 47:115CrossRefGoogle Scholar
  10. 10.
    Arena F, Horrell BA, Cocke DL, Parmaliana A, Giordano N (1991) J Catal 132:58 CrossRefGoogle Scholar
  11. 11.
    González-Cortés SL, Fontal B, Moronta D (2001) Rev Mex Fis 47:367Google Scholar
  12. 12.
    Libre JM, Barbaux Y, Grzybowska B, Bonnelle JP (1981) React Kinet Catal Lett 20:249CrossRefGoogle Scholar
  13. 13.
    JCPDS Powder Diffraction File (1989) Internacional Centre for Diffraction Data, Swarthmore, PA Google Scholar
  14. 14.
    Bernal S, Botana FJ, García R, Rodríguez-Izquierdo JM (1983) Thermochim Acta 83:139CrossRefGoogle Scholar
  15. 15.
    Bernal S, Diaz JA, García R, Rodríguez-Izquierdo JM (1985) J Mater Sci 20:537CrossRefGoogle Scholar
  16. 16.
    Squire GD, Luc H, Puxley DC (1994) Appl Catal A:Gen 108:261CrossRefGoogle Scholar
  17. 17.
    Parmaliana A, Arenas F, Frusteri F, Giordano N (1990) J Chem Soc Faraday Trans 86:2663CrossRefGoogle Scholar
  18. 18.
    González-Cortés SL, Orozco J, Fontal B (2001) Appl Catal A:Gen 213:259CrossRefGoogle Scholar
  19. 19.
    Tsang S, Lin J, Tan KL (1998) Catal Lett 51:169CrossRefGoogle Scholar
  20. 20.
    Zechina A, Spoto G, Coluccia S, Guglielminotti E (1984) J Chem Soc Faraday Trans 80:1875CrossRefGoogle Scholar
  21. 21.
    Turcotte RP, Sawyer JO, Eyring L (1968) Inorg Chem 8:238CrossRefGoogle Scholar
  22. 22.
    Taylor RP, Schrader GL (1991) Ind Eng Chem Res 30:1016CrossRefGoogle Scholar
  23. 23.
    Le Van T, Che M, Tatibouët JM, Kermarec M (1993) J Catal 142:18CrossRefGoogle Scholar
  24. 24.
    Kuz’mitskaya SY, Odegova GV, Vasil’eva NA, Plyasova LM, Kriger TA, Zaikovskii VI (1997) Kinet Catal 38:848Google Scholar
  25. 25.
    Ivanova AS, Moroz BL, Moroz EM, Larichev YV, Paukshtis EA, Bukhtiyarov VI (2005) J Solid State Chem 178:2365CrossRefGoogle Scholar
  26. 26.
    Rodulfo-Baechler SMA, Pernía W, Aray I, Figueroa H, González-Cortés SL (2006) Catal Lett 112:231CrossRefGoogle Scholar
  27. 27.
    Taylor HA, Thon N (1952) J Am Chem Soc 74:4169CrossRefGoogle Scholar
  28. 28.
    Courcot D, Grzybowska B, Barbaux Y, Rigole M, Pochel A, Guelton M (1996) J Chem Soc, Faraday Trans 92:1609CrossRefGoogle Scholar
  29. 29.
    Shevts VA, Vrotyntsev VM, Kazansky VB (1969) Kinet Catal 10:356Google Scholar
  30. 30.
    Kazansky VB (1977) Kinet Catal 18:43Google Scholar
  31. 31.
    Bielański A, Haber J (1991) In: Oxygen in catalysis, Marcel Dekker, Inn Google Scholar
  32. 32.
    Haber J, Turek W (2000) J Catal 190:320CrossRefGoogle Scholar
  33. 33.
    Sokolovskii VD (1990) Catal Rev-Sci Eng 32:1CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Sergio L. González-Cortés
    • 1
    Email author
  • Ismael Aray
    • 1
  • Serbia M. A. Rodulfo-Baechler
    • 1
  • Claudio A. Lugo
    • 1
  • Hector L. Del Castillo
    • 1
  • Alfonso Loaiza-Gil
    • 1
  • Freddy E. Imbert
    • 1
  • Humberto Figueroa
    • 1
  • Wilfredo Pernía
    • 1
  • Alfonso Rodríguez
    • 2
  • Oduber Delgado
    • 2
  • Rodrigo Casanova
    • 2
  • Juan Mendialdua
    • 2
  • Fulgencio Rueda
    • 2
  1. 1.Laboratorio de Cinética y Catálisis, Departamento de Química, Facultad de CienciasUniversidad de Los AndesMeridaVenezuela
  2. 2.Laboratorio de Física de Superficies, Departamento de Física, Facultad de CienciasUniversidad de Los AndesMeridaVenezuela

Personalised recommendations