Advertisement

Journal of Materials Science

, Volume 42, Issue 16, pp 6555–6565 | Cite as

Theoretical study of the insulating oxides and nitrides: SiO2, GeO2, Al2O3, Si3N4, and Ge3N4

  • Cem Sevik
  • Ceyhun Bulutay
Article

Abstract

An extensive theoretical study is performed for wide bandgap crystalline oxides and nitrides, namely, SiO2, GeO2, Al2O3, Si3N4, and Ge3N4. Their important polymorphs are considered which are for SiO2: α-quartz, α- and β-cristobalite and stishovite, for GeO2: α-quartz, and rutile, for Al2O3: α-phase, for Si3N4 and Ge3N4: α- and β-phases. This work constitutes a comprehensive account of both electronic structure and the elastic properties of these important insulating oxides and nitrides obtained with high accuracy based on density functional theory within the local density approximation. Two different norm-conserving ab initio pseudopotentials have been tested which agree in all respects with the only exception arising for the elastic properties of rutile GeO2. The agreement with experimental values, when available, are seen to be highly satisfactory. The uniformity and the well convergence of this approach enables an unbiased assessment of important physical parameters within each material and among different insulating oxide and nitrides. The computed static electric susceptibilities are observed to display a strong correlation with their mass densities. There is a marked discrepancy between the considered oxides and nitrides with the latter having sudden increase of density of states away from the respective band edges. This is expected to give rise to excessive carrier scattering which can practically preclude bulk impact ionization process in Si3N4 and Ge3N4.

Keywords

Elastic Constant GeO2 Valence Band Maximum Conduction Band Minimum Plane Wave Energy Cutoff 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

This work has been supported by the European FP6 Project SEMINANO with the contract number NMP4 CT2004 505285. We would like to thank R. Eryiğit, T. Gürel, O. Gülseren, D. Çakır and T. Yıldırım for their useful advices and to Dr. Can Uğur Ayfer for the access to Bilkent University Computer Center facilities.

References

  1. 1.
    Robertson J (2006) Rep Prog Phys 69:327CrossRefGoogle Scholar
  2. 2.
    Ay F, Aydinli A (2004) Opt Matl 26:33CrossRefGoogle Scholar
  3. 3.
    Ossicini S, Pavesi L, Priolo F (2003) Light emitting silicon for microphotonics. Springer, BerlinCrossRefGoogle Scholar
  4. 4.
    Hayashi S, Nagareda T, Kanzawa Y, Yamamoto K (1993) Jpn J Appl Phys 32:3840CrossRefGoogle Scholar
  5. 5.
    Iacona F, Franzó G, Spinella C (2000) J Appl Phys 87:1295CrossRefGoogle Scholar
  6. 6.
    Wang YQ, Kong GL, Chen WD, Diao HW, Chen CY, Zhang SB, Liao XB (2002) Appl Phys Lett 81:4174CrossRefGoogle Scholar
  7. 7.
    Serincan U, Aygun G, Turan R (2005) J Lumin 113:229CrossRefGoogle Scholar
  8. 8.
    Volodin VA, Gorokhov EB, Efremov MD, Marin DV, Orekhov DA (2003) JETP Lett 77:411CrossRefGoogle Scholar
  9. 9.
    Gorokhov EB, Volodin VA, Marin DV, Orekhov DA, Cherkov AG, Gutakovskii AK, Shvets VA, Borisov AG, Efremov MD (2005) Semiconductors 39:1168CrossRefGoogle Scholar
  10. 10.
    Volodin VA, Efremov MD, Gritsenko VA (1997) Solid State Phenom 57–58:501CrossRefGoogle Scholar
  11. 11.
    Steimle RF, Sadd M, Muralidhar R, Rao R, Hradsky B, Straub S, White BE (2003) IEEE Trans Nanotechnol 2:335CrossRefGoogle Scholar
  12. 12.
    Choi S, Yang H, Chang M, Baek S, Hwang H, Jeon S, Kim J, Kim C (2005) Appl Phys Lett 86:251901CrossRefGoogle Scholar
  13. 13.
    Tognini P, Andreani LC, Geddo M, Stella A, Cheyssac P, Kofman R, Migliori A (1996) Phys Rev B 53:6992CrossRefGoogle Scholar
  14. 14.
    Wan Q, Lin CL, Liu WL, Wang TH (2003) Appl Phys Lett 82:4708; Wan Q, Lin CL, Zhang NL, Liu WL, Yang G, Wang TH (2003) Appl Phys Lett 82:3162Google Scholar
  15. 15.
    Tetelbaum DI, Mikhaylov AN, Gorshkov ON, Kasatkin AP, Belov AI, Gaponova DM, Morozov SV (2005) Vacuum 78:519CrossRefGoogle Scholar
  16. 16.
    Chambouleyron I, Zanatta AR (1998) J Appl Phys 84:1CrossRefGoogle Scholar
  17. 17.
    Wang SJ, Chai JW, Pan JS, Huan ACH (2006) Appl Phys Lett 89:022105CrossRefGoogle Scholar
  18. 18.
    Eshelby JD (1957) Proc R Soc London A 241:376CrossRefGoogle Scholar
  19. 19.
    Balasubramanian S, Ceder G, Kolenbrander KD (1996) J Appl Phys 79:4132CrossRefGoogle Scholar
  20. 20.
    Weissker H-Ch, Furthmüller J, Bechstedt F (2002) Phys Rev B 65:155328CrossRefGoogle Scholar
  21. 21.
    Weissker H-Ch, Furthmüller J, Bechstedt F (2003) Phys Rev B 67:165322CrossRefGoogle Scholar
  22. 22.
    Efremov NA, Pokutnii SI (1985) Soviet Phys Solid St 27:27; ibid., 32, (1990) 955.Google Scholar
  23. 23.
    Brus LE (1986) IEEE Trans J Quant Electron 22:1909CrossRefGoogle Scholar
  24. 24.
    Fischetti MV, Higman JM (1991) In: Hess Kluwer K (ed) Monte Carlo device simulation: full band and beyond. DordrechtGoogle Scholar
  25. 25.
    Hohenberg P, Kohn W (1964) Phys Rev 136:B864CrossRefGoogle Scholar
  26. 26.
    Kohn W, Sham LJ (1965) Phys Rev 140:A1133CrossRefGoogle Scholar
  27. 27.
    Gonze X, Beuken JM, Caracas R, Detraux F, Fuchs M, Rignanese GM, Sindic L, Verstraete M, Zerah G, Jollet F, Torrent M, Roy A, Mikami M, Ghosez P, Raty JY, Allan DC (2002) Comput Mater Sci 25:478CrossRefGoogle Scholar
  28. 28.
    Li YP, Ching WY (1985) Phys Rev B 31:2172CrossRefGoogle Scholar
  29. 29.
    Xu Y, Ching WY (1991) Phys Rev B 44:11048CrossRefGoogle Scholar
  30. 30.
    Tetelbaum DI, Mikhaylov AN, Gorshkov ON, Kasatkin AP, Belov AI, Gaponova DM, Morozov SV (2005) Vacuum 78:519; Liu F, Garofalini S, King-Smith D, Vanderbilt D (1994) Phys Rev B 49:12528CrossRefGoogle Scholar
  31. 31.
    Ching WY, Xu YN (1994) J Am Ceram Soc 77:404CrossRefGoogle Scholar
  32. 32.
    Xu YN, Ching WY (1995) Phys Rev B 51:17379CrossRefGoogle Scholar
  33. 33.
    Mo SD, Ching WY (1998) Phys Rev B 57:15219CrossRefGoogle Scholar
  34. 34.
    Demuth T, Jeanvoine Y, Hafner J, Ángyán JG (1999) J Phys: Condens Matter 11:3833Google Scholar
  35. 35.
    Holm B, Ahuja R, Yourdshahyan Y, Johansson B, Lundqvist BI (1999) Phys Rev B 59:12777CrossRefGoogle Scholar
  36. 36.
    Christie DM, Chelikowsky JR (2000) Phys Rev B 62:14703CrossRefGoogle Scholar
  37. 37.
    Idrobo JC, Iddir H, Öğüt S, Ziegler A, Browning ND, Ritchie RO (2005) Phys Rev B 72:241301CrossRefGoogle Scholar
  38. 38.
    Goedecker S, Teter M, Huetter J (1996) Phys Rev B 54:1703CrossRefGoogle Scholar
  39. 39.
    Perdew JP, Zunger A (1981) Phys Rev B 23:5048CrossRefGoogle Scholar
  40. 40.
    Ceperley DM, Alder BJ (1980) Phys Rev Lett 45:566CrossRefGoogle Scholar
  41. 41.
    Troullier N, Martins JL (1990) Solid State Commun 74:613; Phys Rev B 43, 1993 (1991); Phys Rev B 43 (1991) 8861Google Scholar
  42. 42.
    Gonze X, Lee C (1997) Phys Rev B 55:10355CrossRefGoogle Scholar
  43. 43.
    Wyckoff RWG (1965) Crystal structure. Interscience, New YorkGoogle Scholar
  44. 44.
    Baur WH, Khan AA (1971) Acta Crystallogr Sec B-27:2133CrossRefGoogle Scholar
  45. 45.
    Balitski˘ı DB, Sil’vestrova OYu, Balitski˘ı, VS, Pisarevski YuV, Pushcharovski; DYu, Philippot E (2000) Crystallogr Rep 45:145CrossRefGoogle Scholar
  46. 46.
    Bolzan AA, Fong B, Kennedy JB, Howard ChJ (1997) Acta Crystallogr Sect B: Struct Sci B 53:373CrossRefGoogle Scholar
  47. 47.
    Wang H, Simmons G (1973) J Geophys Res 78:1262CrossRefGoogle Scholar
  48. 48.
    Levien L, Prewitt CT (1981) Am Mineral 66:324Google Scholar
  49. 49.
    Downs RT, Palmer DC (1994) Am Mineral 79:9Google Scholar
  50. 50.
    Wright AF, Leadbetter AJ (1975) Phil Mag 31:1391CrossRefGoogle Scholar
  51. 51.
    Sugiyama M, Endo S, Koto K (1987) Mineral J Japan 13:455CrossRefGoogle Scholar
  52. 52.
    Van Ginhoven RM, Jónsson H, Corrales LR (2005) Phys Rev B 71:024208CrossRefGoogle Scholar
  53. 53.
    Mcskimin J, Andreatch P, Thurston RN (1987) J Appl Phys 36:1624CrossRefGoogle Scholar
  54. 54.
    Grimsditch M, Polian A, Brazhkin V, Balitski˘ı D (1998) J Appl Phys 83:3018CrossRefGoogle Scholar
  55. 55.
    Weidner DJ, Bass JD, Ringwood AE, Sinclair W (1982) Geophys Res Lett 87:4740CrossRefGoogle Scholar
  56. 56.
    Watchman J Jr, Teft EE, Lam DG Jr, Stinchfield RP (1960) J Res Natl Bur Stand 64:213Google Scholar
  57. 57.
    Vogelgesang R, Grimsditch M, Wallace JS (2000) Appl Phys Lett 76:982CrossRefGoogle Scholar
  58. 58.
    Wendel JA, Goddard WA III (1992) J Chem Phys 97:5048CrossRefGoogle Scholar
  59. 59.
    Theory of the Inhomogenious Electron Gas (1983) Lundqvist S, March NH (eds) Plenum, New York, and references thereinGoogle Scholar
  60. 60.
    Sarnthein J, Pasquarello A, Car R (1995) Phys Rev Lett 74:4682CrossRefGoogle Scholar
  61. 61.
    Ridley BK (1999) Quantum processes in semiconductors. Oxford University Press, OxfordGoogle Scholar
  62. 62.
    Monkhorst HJ, Pack JD (1976) Phys Rev B 13:5188CrossRefGoogle Scholar
  63. 63.
    Ramos LE, Furthmüller J, Bechstedt F (2004) Phys Rev B 69:085102CrossRefGoogle Scholar
  64. 64.
    Wyckoff WL (1925) Am J Sci 9:448; 26 (2004) 33Google Scholar
  65. 65.
    Roberts WL, et al (1990) Encyclopedia of Minerals, 2d edn. Van Nostrand Reinhold, New YorkCrossRefGoogle Scholar
  66. 66.
    French RH (1990) J Am Ceram Soc 73:447Google Scholar
  67. 67.
    Page YL, Saxe P (2002) Phy Rev B 65:104104CrossRefGoogle Scholar
  68. 68.
    Weiss J (1981) Annu Rev Mater Sci 11:381CrossRefGoogle Scholar
  69. 69.
    Dong J, Sankey OF, Deb SK, Wolf G, McMillan PF (2000) Phys Rev B 61:11979CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Department of Physics and National Nanotechnology Research CenterBilkent UniversityAnkaraTurkey

Personalised recommendations