Journal of Materials Science

, Volume 42, Issue 16, pp 6672–6683 | Cite as

Homogeneous and heterogeneous melting behavior of bulk and nanometer-sized Cu systems: a numerical study

  • G. Manai
  • F. DeloguEmail author


Molecular dynamics simulations have been used to investigate the solid–liquid transition of different Cu systems. These consisted of surface-free crystalline bulks and semi-crystals terminating with a free surface as well as of particles and wires with different shape and size in the mesoscale regime. The characteristic melting points of the various systems were attained by gradual heating starting from 300 K. Apart from surface-free bulk systems, where the phase transition at the limit of superheating is homogeneous, melting displays heterogeneous character. This is due to the existence of surface layers with structural and energetic properties different from the ones of bulk-like interior. Simulations point out a significant depression of both the melting point and latent heat of fusion for nanometer-sized systems respect to semi-crystals. Below the characteristic melting point, free surfaces are involved in pre-melting processes determining the formation of a solid–liquid interface. The onset of melting is related to the formation of a critical amount of lattice defects and this provides a common basis for the rationalization of homogeneous and heterogeneous melting processes despite their intrinsic differences.


Liquid Interface Atomic Plane Bulk System Shockley Partial Dislocation Equilibrium Melting Point 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Dr. L. Burakovsky, Theoretical Division, Los Alamos National Laboratory, U.S.A., and Prof. G. Cocco, Department of Chemistry, University of Sassari, Italy, are gratefully acknowledged for stimulating discussions and useful suggestions. A. Ermini, ExtraInformatica s.r.l., is gratefully acknowledged for his kind assistance. Financial support was given by the University of Cagliari.


  1. 1.
    Moriarty P (2001) Rep Prog Phys 64:297CrossRefGoogle Scholar
  2. 2.
    Jortner J, Rao CNR (2002) Pure Appl Chem 74:1491CrossRefGoogle Scholar
  3. 3.
    Hill TL (2001) Nano Lett 1:273CrossRefGoogle Scholar
  4. 4.
    Alivisatos P (1996) Science 271:933CrossRefGoogle Scholar
  5. 5.
    Pawlow P (1909) Z Phys Chem (Munich) 65:1CrossRefGoogle Scholar
  6. 6.
    Hollomon TH, Turnbull D (1953) Prog Metal Phys 4:333CrossRefGoogle Scholar
  7. 7.
    Takagi M (1954) J Phys Soc Jpn 9:359CrossRefGoogle Scholar
  8. 8.
    Wronski CRM (1967) Br J Appl Phys 18:1731CrossRefGoogle Scholar
  9. 9.
    Coombes CJ (1972) J Phys F: Metal Phys 2:441CrossRefGoogle Scholar
  10. 10.
    Hanszen K-J (1960) Z Phys 157:523CrossRefGoogle Scholar
  11. 11.
    Buffat PH, Borel J-P (1976) Phys Rev A 13:2287CrossRefGoogle Scholar
  12. 12.
    Couchman PR, Jesser WA (1977) Nature 269:481CrossRefGoogle Scholar
  13. 13.
    Reiss H, Mirabel P, Whetten RL (1988) J Phys Chem 92:7241CrossRefGoogle Scholar
  14. 14.
    Sakai H (1996) Surf Sci 351:285CrossRefGoogle Scholar
  15. 15.
    Peters KF, Cohen JB, Chung Y-W (1998) Phys Rev B 57:13430CrossRefGoogle Scholar
  16. 16.
    Lai SL, Guo JY, Petrova V, Ramanath G, Allen LH (1996) Phys Rev Lett 77:99CrossRefGoogle Scholar
  17. 17.
    Yu Efremov M, Schiettekatte F, Zhang M, Olson EA, Kwan AT, Berry LS, Allen LH (2000) Phys Rev Lett 85:3560CrossRefGoogle Scholar
  18. 18.
    Zhang M, Yu Efremov M, Schiettekatte F, Olson EA, Kwan AT, Lai SL, Greene JE, Allen LH (2000) Phys Rev B 62:10548CrossRefGoogle Scholar
  19. 19.
    Olson EA, Yu Efremov M, Zhang M, Zhang Z, Allen LH (2005) J Appl Phys 97:034304CrossRefGoogle Scholar
  20. 20.
    Dash JG (2002) Contemp Phys 43:427CrossRefGoogle Scholar
  21. 21.
    Stillinger FH, Weber TA (1984) Science 228:983CrossRefGoogle Scholar
  22. 22.
    Kleinert H (1989) Gauge theory in condensed matter. World Scientific, SingaporeGoogle Scholar
  23. 23.
    Tallon JL (1989) Nature 342:658CrossRefGoogle Scholar
  24. 24.
    Lu K, Li Y (1998) Phys Rev Lett 80:4474CrossRefGoogle Scholar
  25. 25.
    Cahn RW (2001) Nature 413:582CrossRefGoogle Scholar
  26. 26.
    Jin ZH, Gumbsch P, Lu K, Ma E (2001) Phys Rev Lett 87:055703CrossRefGoogle Scholar
  27. 27.
    Lindemann FA (1910) Phys Z 11:609Google Scholar
  28. 28.
    Gilvarry JJ (1956) Phys Rev 102:308CrossRefGoogle Scholar
  29. 29.
    Born M, Huang K (1954) Dynamical theory of crystal lattices. Clarendon Press, OxfordGoogle Scholar
  30. 30.
    Kosterlitz J, Thouless DJ (1973) J Phys C 6:1181CrossRefGoogle Scholar
  31. 31.
    Nelson DR, Halperin BI (1979) Phys Rev B 19:2457CrossRefGoogle Scholar
  32. 32.
    Young AP (1979) Phys Rev B 19:1855CrossRefGoogle Scholar
  33. 33.
    Burakovsky L, Preston D, Silbar R (2000) Phys Rev B 61:15011CrossRefGoogle Scholar
  34. 34.
    Gomez L, Dobry A, Geuting Ch, Diep HT, Burakovsky L (2003) Phys Rev Lett 90:095701CrossRefGoogle Scholar
  35. 35.
    Gomez L, Gazza C, Dacharry H, Penaranda L, Dobry A (2005) Phys Rev B 71:134106CrossRefGoogle Scholar
  36. 36.
    Broughton JQ, Gilmer GH (1986) Phys Rev Lett 56:2692CrossRefGoogle Scholar
  37. 37.
    Rosato V, Ciccotti G, Pontikis V (1986) Phys Rev B 33:1860CrossRefGoogle Scholar
  38. 38.
    Honeycutt JD, Andersen HC (1987) J Phys Chem 91:4950CrossRefGoogle Scholar
  39. 39.
    Phillpot SR, Lutsko JF, Wolf D, Yip S (1989) Phys Rev B 40:2831CrossRefGoogle Scholar
  40. 40.
    Lutsko JF, Wolf D, Phillpot SR, Yip S (1989) Phys Rev B 40:2841CrossRefGoogle Scholar
  41. 41.
    Hall BD, Flueli M, Monot R, Borel J-P (1991) Phys Rev B 43:3906CrossRefGoogle Scholar
  42. 42.
    Cleveland CL, Luedtke WD, Landman U (1999) Phys Rev B 60:5065CrossRefGoogle Scholar
  43. 43.
    Qi Y, Ĉağin T, Johnson WL, Goddard WA III (2001) J Chem Phys 115:385CrossRefGoogle Scholar
  44. 44.
    Delogu F (2005) Phys Rev B 72:205418CrossRefGoogle Scholar
  45. 45.
    Ducastelle F (1970) J Phys (Paris) 31:1055CrossRefGoogle Scholar
  46. 46.
    Rosato V, Guillope M, Legrand B (1989) Phil Mag A 59:321CrossRefGoogle Scholar
  47. 47.
    Cleri F, Rosato V (1993) Phys Rev B 48:22CrossRefGoogle Scholar
  48. 48.
    Wollenberger HJ (1996) In: Cahn RW, Haasen P (eds) Physical metallurgy, 4th edn. Amsterdam, North HollandGoogle Scholar
  49. 49.
    Brandes EA, Brook GB (eds) (1992) Smithells metals reference handbook, 7th edn. Butterworth-Heinemann, OxfordGoogle Scholar
  50. 50.
    Finnis MW, Sinclair JF (1984) Phil Mag A 50:45CrossRefGoogle Scholar
  51. 51.
    Daw MS, Baskes MI (1984) Phys Rev B 29:6443CrossRefGoogle Scholar
  52. 52.
    Andersen HC (1980) J Chem Phys 72:2384CrossRefGoogle Scholar
  53. 53.
    Nose’ S (1984) J Chem Phys 81:511CrossRefGoogle Scholar
  54. 54.
    Parrinello M, Rahman A (1981) J Appl Phys 52:7182CrossRefGoogle Scholar
  55. 55.
    Allen MP, Tildesley D (1987) Computer simulation of liquids. Clarendon Press, OxfordGoogle Scholar
  56. 56.
    Li J, Van Vliet KJ, Zhu T, Yip S, Suresh S (2002) Nature 418:307CrossRefGoogle Scholar
  57. 57.
    Belonoshko A, Skorodumova NV, Rosengren A, Johansson B (2006) Phys Rev B 73:012201CrossRefGoogle Scholar
  58. 58.
    Somer FL Jr, Canright GS, Kaplan T (1998) Phys Rev E 58:5748CrossRefGoogle Scholar
  59. 59.
    Quinn RA, Goree J (2001) Phys Rev E 64:051404CrossRefGoogle Scholar
  60. 60.
    Tartaglino U, Zykova-Timan T, Ercolessi F, Tosatti E (2005) Phys Rep 411:291CrossRefGoogle Scholar
  61. 61.
    Zheng XH, Grieve R (2006) Phys Rev B 73:064205CrossRefGoogle Scholar
  62. 62.
    Delogu F (2005) J Phys Chem B 109:15291CrossRefGoogle Scholar
  63. 63.
    Delogu F (2006) J Phys Chem B 110:3281CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Department of PhysicsTrinity CollegeDublin 2Ireland
  2. 2.Dipartimento di Ingegneria Chimica e MaterialiUniversità degli Studi di CagliariCagliariItaly

Personalised recommendations