Advertisement

Journal of Materials Science

, Volume 42, Issue 16, pp 6566–6571 | Cite as

Electrical conduction properties of Sr-doped Bi4(SiO4)3 with the eulytite-type structure

  • Naoto KitamuraEmail author
  • Koji Amezawa
  • Yoshiharu Uchimoto
  • Yoichi Tomii
  • Teiichi Hanada
Article

Abstract

Electrical conduction in 1 mol% Sr-doped Bi4(SiO4)3 with the eulytite-type structure at elevated temperatures was investigated with conductivity measurements. Conductivity of the material under wet condition was higher than that under dry condition, and were 1.2  ×  10−6 – 9.7  ×  10−5 S cm−1 at 500–850 °C. From H/D isotope effects and p(O2)-dependencies of the conductivity, it was found that the Sr-doped Bi4(SiO4)3 exhibited protonic conduction at all the temperatures investigated while contribution of p-type conduction became significant with increasing p(O2) and/or temperature. Protonic and p-type conductions in the material were discussed in terms of defect equilibria.

Keywords

Isotope Effect Protonic Conduction Conductivity Ratio Electron Hole Oxygen Deficit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

A part of this work was supported by Industrial Technology Research Grant Program in ’05 from New Energy and Industrial Technology Development Organization (NEDO) of Japan. The authors acknowledge Dr. H. Miyamoto at New Eco Material Co. Ltd., Kochi, Japan, and Mr. Y. Nishikawa at the Technology Research Institute of Osaka Prefecture, Japan, for their help on material preparation.

References

  1. 1.
    Iwahara H, Esaka T, Uchida H, Maeda N (1981) Solid State Ionics 3/4:359CrossRefGoogle Scholar
  2. 2.
    Norby T (1999) Solid State Ionics 125:1CrossRefGoogle Scholar
  3. 3.
    Kreuer K-D (1996) Chem Mater 8:610CrossRefGoogle Scholar
  4. 4.
    Iwahara H, Shimura T, Matsumoto H (2000) Electrochemistry 68:154Google Scholar
  5. 5.
    Norby T, Christiansen N (1995) Solid State Ionics 77:240CrossRefGoogle Scholar
  6. 6.
    Amezawa K, Kjelstrup S, Norby T, Ito Y (1998) J Electrochem Soc 145:3313CrossRefGoogle Scholar
  7. 7.
    Amezawa K, Maekawa H, Tomii Y, Yamamoto N (2001) Solid State Ionics 145:233CrossRefGoogle Scholar
  8. 8.
    Kitamura N, Amezawa K, Tomii Y, Yamamoto N (2003) Solid State Ionics 162–163:161CrossRefGoogle Scholar
  9. 9.
    Gallini S, Hänsel M, Norby T, Colomer MT, Jurado JR (2003) Solid State Ionics 162–163:167CrossRefGoogle Scholar
  10. 10.
    Amezawa K, Tomii Y, Yamamoto N (2003) Solid State Ionics 162–163:175CrossRefGoogle Scholar
  11. 11.
    Amezawa K, Tomii Y, Yamamoto N (2005) Solid State Ionics 176:135CrossRefGoogle Scholar
  12. 12.
    Amezawa K, Tomii Y, Yamamoto N (2005) Solid State Ionics 176:143CrossRefGoogle Scholar
  13. 13.
    Kitamura N, Amezawa K, Tomii Y, Hanada T, Yamamoto N, Omata T, Otsuka-Yao-Matsuo S (2005) J Electrochem Soc 152:A658CrossRefGoogle Scholar
  14. 14.
    Amezawa K, Kitajima Y, Tomii Y, Yamamoto N (2004) Electrochem Solid-State Lett 7:A511CrossRefGoogle Scholar
  15. 15.
    Amezawa K, Kitajima Y, Tomii Y, Yamamoto N, Widerøe M, Norby T (2005) Solid State Ionics 176:2867CrossRefGoogle Scholar
  16. 16.
    Amezawa K, Tomii Y, Yamamoto N (2004) Solid State Ionics 175:569CrossRefGoogle Scholar
  17. 17.
    Barbier J, Greedan JE, Asaro T, McCarthy GJ (1990) Eur J Solid State Inorg Chem 27:855Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Naoto Kitamura
    • 1
    Email author
  • Koji Amezawa
    • 1
  • Yoshiharu Uchimoto
    • 1
  • Yoichi Tomii
    • 2
  • Teiichi Hanada
    • 3
  1. 1.Graduate School of Human and Environmental StudiesKyoto UniversitySakyo-ku, KyotoJapan
  2. 2.Graduate School of Energy ScienceKyoto UniversitySakyo-ku, KyotoJapan
  3. 3.Graduate School of ScienceKyoto UniversitySakyo-ku, KyotoJapan

Personalised recommendations