Advertisement

Journal of Materials Science

, Volume 42, Issue 16, pp 6549–6554 | Cite as

Composition dependence of thermally induced second-harmonic generation in chalcohalide glasses

  • Haitao Guo
  • Xiaolin Zheng
  • Xiujian Zhao
  • Guojun Gao
  • Yueqiu Gong
  • Shaoxuan Gu
Article

Abstract

By investigating the second-harmonic generation (SHG) of the series (100 − 2x)GeS2·xGa2S3·xPbI2 (x = 5, 10, 15, and 20) chalcohalide glass samples after thermal poling, it was found that there was an optimal poling temperature for each composition and there was also a relation between optimal poling temperature and glass transition temperature. With increasing x, the obtained second-order susceptibility χ(2) shows an increase first and then decrease, and the maximum was seen at x = 15. A dipole reorientation model and structural relaxation causing by Ga2S3 and PbI2 were proposed to explain the dependence of poling temperature on SH intensity for each composition and the presence of the maximum χ(2) in this chalcohalide glass series.

Keywords

Glass Transition Temperature Ga2S3 GeS2 Poling Temperature PbI2 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgment

This work was partially funded by the National Natural Science Foundation of China (No. 50125205), the Opening Fund of Key Laboratory of Silicate Materials Science and Engineering (Wuhan University of Technology) Ministry of Education (No. SYSJJ2004-14).

References

  1. 1.
    Alley TG, Brueck SRJ (1998) Opt Lett 23:1170CrossRefGoogle Scholar
  2. 2.
    Kudlinski A, Martinelli G, Quiquempois Y (2005) Opt Lett 30:1039CrossRefGoogle Scholar
  3. 3.
    Tanaka K, Narazaki A, Hirao K, Soga N (1996) J Appl Phys 79:3798CrossRefGoogle Scholar
  4. 4.
    Nasu H, Kurachi K, Mito A, Okamoto H, Matsuoka J, Kamiya K (1995) J Non-Cryst Solids 181:83CrossRefGoogle Scholar
  5. 5.
    Miyata M, Nasu H, Mito A, Ohta Y, Kamiya K (1998) J Ceram Soc Jpn 106:135CrossRefGoogle Scholar
  6. 6.
    Jain RK, Lind RC (1983) J Opt Soc Am 73:647CrossRefGoogle Scholar
  7. 7.
    Liu QM, Zhao XJ, Gan FX (2000) Acta Phys Sin-CH ED 49:1726Google Scholar
  8. 8.
    Liu QM, Gan FX, Zhao XJ, Tanaka K, Narazaki A, Hirao K (2001) Opt Lett 26:1347CrossRefGoogle Scholar
  9. 9.
    Qiu JR, Si J, Hirao K (2001) Opt Lett 26:914CrossRefGoogle Scholar
  10. 10.
    Guignard M, Nazabal V, Troles J, Smektala F, Zeghlache H, Quiquempois Y, Kudlinski A, Martinelli G (2005) Opt Express 13:789CrossRefGoogle Scholar
  11. 11.
    Guignard M, Nazabal V, Smektala F, Zeghlache H, Kudlinski A, Quiquempois Y, Martinelli G (2006) Opt Express 14:1524CrossRefGoogle Scholar
  12. 12.
    Nakane Y, Nasu H, Heo J, Hashimoto T, Kamiya K (2005) J Ceram Soc Jpn 113:728CrossRefGoogle Scholar
  13. 13.
    Guo HT, Zhai YB, Tao HZ, Gong YQ, Zhao XJ (2007) Mater Res Bull 42:1111CrossRefGoogle Scholar
  14. 14.
    Dong GP, Tao HZ, Xiao XD, Lin CG, Zhao XJ, Mao S (2007) J Phys Chem Solids 68:158CrossRefGoogle Scholar
  15. 15.
    Alley TG, Brueck SRJ, Myers RA (1998) J Non-Cryst Solids 242:165CrossRefGoogle Scholar
  16. 16.
    Pretre Ph, Wu LM, Knoesen A (1998) J Opt Soc Am B 15:359CrossRefGoogle Scholar
  17. 17.
    Takebe H, Kazansky PG, St Russell PJ, Morinaga K (1996) Opt Lett 21:468CrossRefGoogle Scholar
  18. 18.
    Guo HT, Tao HZ, Zhai YB, Mao S, Zhao XJ (in press) Spectrochim Acta Part A: Mol Biomol Spectrosc doi: 10.1016/ j. saa. 2006. 10. 023Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Haitao Guo
    • 1
  • Xiaolin Zheng
    • 1
  • Xiujian Zhao
    • 1
  • Guojun Gao
    • 1
  • Yueqiu Gong
    • 1
  • Shaoxuan Gu
    • 1
  1. 1.Key Laboratory of Silicate Materials Science and Engineering, Ministry of EducationWuhan University of TechnologyWuhanP.R. China

Personalised recommendations