Advertisement

Journal of Materials Science

, Volume 42, Issue 16, pp 6583–6589 | Cite as

Morphological control in solvothermal synthesis of titanium oxide

  • Rong-Cai Xie
  • Jian Ku Shang
Article

Abstract

A solvothermal method is described for preparing nanomaterials of titanium oxide with different morphologies. Nanostructures, such as wire, rod, cube, and fiber, were synthesized in mass quantities by controlling either the concentrations of the precursor or growth temperature and introducing different additives in one simple system based on titanium tetroisopropoxide and ethylene glycol. Hydrothermal treatment of the base system produced nanowires with diameters around 40 nm. The addition of ethylenediamine (EDA) to the system inhibited the radial expansion of the nanowires, resulting in nanorods and nanofibers with diameters down to about 2 nm. Increasing the EDA concentration tended to induce mesoscale self-assembly of nanofibers into arrays. The presence of water promoted the formation of nearly spherical nanoparticles with sizes dependent on the EDA concentration. At higher temperatures, the same system yielded well-defined nanobelts or nanocubes. The replacement of EDA by 2,4-pentanedione favored the formation of nanosheets while tetramethylammonium hydroxide appeared to confuse the growth of nanorods, creating a continuous network.

Keywords

TiO2 TiO2 Nanoparticles TiO2 Nanorod Tetramethylammonium Hydroxide TiO2 Nanocrystals 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

This study was supported by the Center of Advanced Materials for the Purification of Water with Systems, National Science Foundation, under Agreement Number CTS-0120978 and by the National Basic Research Program of China through Grant No. 2006CB601201. Characterization was carried out in CMM and LSF centers at the Frederick Seitz Materials Research Laboratory, University of Illinois at Urbana-Champaign, which is partially supported by the U.S. Department of Energy under grant DEFG02-91-ER45439.

References

  1. 1.
    Hadjiivanov KI, Klissurski DG (1996) Chem Soc Rev 25:61CrossRefGoogle Scholar
  2. 2.
    Anpo M, Takeuchi M (2003) J Catal 216:505CrossRefGoogle Scholar
  3. 3.
    Fujishima A, Rao TN, Tryk DA (2000) J Photochem Photobio C: Photochem Rev 1:1CrossRefGoogle Scholar
  4. 4.
    Kaneko M, Okura I (2002) In: Photocatalysis science and technology, Kodansha, SpringerGoogle Scholar
  5. 5.
    Bach U, Lupo D, Comte P, Moser JE, Weissortel F, Salbeck J, Spreitzer H, Gratzel M (1998) Nature 395:583CrossRefGoogle Scholar
  6. 6.
    Gratzel M (2001) Nature 414:338CrossRefGoogle Scholar
  7. 7.
    Zhang D, Yoshida T, Furuta K, Minoura H (2004) J Photochem Photobio A: Chem 164:159CrossRefGoogle Scholar
  8. 8.
    Akikusa J, Khan SUM (2002) Int J Hydrogen Energy 27:863CrossRefGoogle Scholar
  9. 9.
    Fujihara K, Ohno T, Matsumura M (1998) J Chem Soc, Faraday Trans 94:3705CrossRefGoogle Scholar
  10. 10.
    Meier K, Gratzel M (2002) Chemphyschem 4:371CrossRefGoogle Scholar
  11. 11.
    Paunesku T, Rajh T, Wiederrecht G, Master J, Vogt S, Stojicevic N, Protic M, Lai B, Oryhon J, Thurnauer M, Woloschak G (2003) Nat Mater 2:343CrossRefGoogle Scholar
  12. 12.
    Cozzoli PD, Kornowski A, Weller H (2003) J Am Chem Soc 125:14539CrossRefGoogle Scholar
  13. 13.
    Huynh WU, Dittmer JJ, Alivisatos AP (2002) Science 295:2427CrossRefGoogle Scholar
  14. 14.
    Li J, Wang LW (2003) Nano Lett 3:1357CrossRefGoogle Scholar
  15. 15.
    Lei Y, Zhang LD, Meng GW, Li GH, Zhang XY, Liang CH, Chen W, Wang SX (2001) Appl Phys Lett 78:1125CrossRefGoogle Scholar
  16. 16.
    Zhang Q, Gao L (2003) Langmuir 19:967CrossRefGoogle Scholar
  17. 17.
    Sugimoto T, Zhou X, Muramatsu A (2003) J Colloid Interface Sci 259:53CrossRefGoogle Scholar
  18. 18.
    Sugimoto T (2003) Chem Eng Technol 26:313CrossRefGoogle Scholar
  19. 19.
    Chemseddine A, Moritz T (1999) Eur Inorg Chem 1999:235CrossRefGoogle Scholar
  20. 20.
    Trentler TJ, Denler TE, Bertone JF, Agrawal A, Colvin VL (1999) J Am Chem Soc 121:1613CrossRefGoogle Scholar
  21. 21.
    Armstrong AR, Armstrong G, Canales J, Bruce PG (2004) Angew Chem Int Ed 43:2286CrossRefGoogle Scholar
  22. 22.
    Jun Y, Casula MF, Sim JH, Kim SY, Cheon J, Alivisatos AP (2003) J Am Chem Soc 125:15981CrossRefGoogle Scholar
  23. 23.
    Fieevet F, Lagier JP, Figlarz M (1989) MRS Bull 14:29CrossRefGoogle Scholar
  24. 24.
    Sun Y, Xia Y (2002) Adv Mater 14:833CrossRefGoogle Scholar
  25. 25.
    Wang Y, Jiang X, Xia Y (2003) J Am Chem Soc 125:16176CrossRefGoogle Scholar
  26. 26.
    Jiang X, Wang Y, Herricks T, Xia Y (2004) J Mater Chem 14:695CrossRefGoogle Scholar
  27. 27.
    Wang Y, Jiang X, Herricks T, Xia Y (2004) J Phys Chem B 108:8631CrossRefGoogle Scholar
  28. 28.
    Jana NR (2004) Angew Chem 116:1562CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Institute of Metal ResearchShenyang National Laboratory for Materials ScienceShenyangChina
  2. 2.Department of Material Science and EngineeringUniversity of Illinois at Urbana-ChampaignUrbanaUSA

Personalised recommendations