Advertisement

Journal of Materials Science

, Volume 42, Issue 16, pp 6866–6877 | Cite as

Influence of thermal and mechanical surface modifications induced by laser shock processing on the initiation of corrosion pits in 316L stainless steel

  • Patrice PeyreEmail author
  • C. Carboni
  • P. Forget
  • G. Beranger
  • C. Lemaitre
  • D. Stuart
Article

Abstract

Pure mechanical and thermo-mechanical laser shock processing treatments have been carried out on an AISI 316L stainless steel. Surface properties, mostly mechanical and metallurgical modifications, were analysed at different scales: a local scale using the nano-indentation technique and AFM analysis, and a more macroscopic scale, using microhardness, optical microscopy and residual stress determinations. After a pure mechanical laser-peening treatment, a significant improvement in the pitting corrosion resistance (+0.1 V) was observed in 0.05 M NaCl. This improvement was attributed to the combined effects of compressive residual stresses and work-hardening, and, in turn, to a mechano-electrochemical phenomenon by which a modification of cathodic reactions occurs during electrochemical tests. For the surface treated by thermo-mechanical laser peening (combination of a surface ablation and shock waves), a tendency for decreasing resistance against pitting corrosion was shown, and attributed to the processing-specific surface texture (ablation craters), which made the material susceptible for the creation of occluded cells.

Keywords

Residual Stress Compressive Residual Stress 316L Stainless Steel Tensile Residual Stress Ablation Crater 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Pan Q, Hang W, Song R, Zhou Y, Zhang G (1998) Surface Coating Technol 102:245CrossRefGoogle Scholar
  2. 2.
    Kwok C, Man H, Cheng F (1998) Surface Coating Technol 99:295CrossRefGoogle Scholar
  3. 3.
    Clauer AH (1981) In: Shock waves and high strain rate phenomena in metals. Plenum Press, New York, p 675CrossRefGoogle Scholar
  4. 4.
    Obata M, Kubo T, Sano Y (2000) Zairyo 49(2):193Google Scholar
  5. 5.
    Peyre P, Scherpereel X, Berthe L, Carboni C, Fabbro R, Beranger G, Lemaitre C (2000) Mater Sci Eng 280(2):294CrossRefGoogle Scholar
  6. 6.
    Krauβ M, Herzog R, Scholtes B (2001) Z Metallkd 92(8):910Google Scholar
  7. 7.
    Braham C, Perrais J, Ledion J (1994) 2ème Colloque Européen “Corrosion Dans Les Usines Chimiques Et Parachimiques’’. 206ème Manifestation Fec, Grenoble (Fr)Google Scholar
  8. 8.
    Ben Rhouma A, Braham C, Fitzpatrick ME (2001) J Mater Eng Perf 10:507CrossRefGoogle Scholar
  9. 9.
    Ke R, Alkire R (1995) J Electrochem Soc 142(12):4056CrossRefGoogle Scholar
  10. 10.
    Carboni C (2002) Doctoral Thesis, University of Technology of Compiègne, FrGoogle Scholar
  11. 11.
    Carboni C, Peyre P, Fregonese M, Mazille H (2001) In: Jeandin M, Sudarshan T (eds) Proceedings of surface modifications technologies XIV (Smt14), Paris, Sept. 2000. ASM, p 381Google Scholar
  12. 12.
    Fabbro R, Fournier J, Ballard P, Devaux D, Virmont J (1990) J Appl Phys 68:775CrossRefGoogle Scholar
  13. 13.
    Schmidt-Uhlig T (2000) Epj Appl Phys 9(3):235CrossRefGoogle Scholar
  14. 14.
    Seo M, Chiba M (2001) Electrochim Acta 47:319CrossRefGoogle Scholar
  15. 15.
    Lu J (2005) In: Lu J (ed) Handbook on residual stress measurements, 2nd edn. SEMGoogle Scholar
  16. 16.
    Gutman EM (1994) Mechanochemistry of solid surfaces, Ed. World Scientific Publishers, SingaporeGoogle Scholar
  17. 17.
    Vignal V, Valot C, Oltra R, Verneau M, Coudreuse L (2002) Corros Sci 44(7):1477CrossRefGoogle Scholar
  18. 18.
    Kamachi Mudali U, Katada Y (2001) Electrochim Acta 46:3735CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Patrice Peyre
    • 1
    Email author
  • C. Carboni
    • 1
  • P. Forget
    • 2
  • G. Beranger
    • 3
  • C. Lemaitre
    • 3
  • D. Stuart
    • 1
  1. 1.GERAILP-LALP, UPR 1578 CNRSArcueilFrance
  2. 2.Cea-SaclayGif Sur YvetteFrance
  3. 3.Laboratoire ROBERVAL, UTCCompiegne CedexFrance

Personalised recommendations