Journal of Materials Science

, Volume 42, Issue 16, pp 6696–6700 | Cite as

Effects of oxygen partial pressure control on the microstructure and PTCR properties of Ho doped BaTiO3

  • Soo Kyong Jo
  • Young Ho HanEmail author
  • Kwang Hwi Choi


Effects of oxygen partial pressure ( \( {\hbox{P}}_{{\hbox{O}}_{\hbox{2}} } \)) control on the electrical properties and microstructural development of (Ba1-xHox)0.997TiO3 were studied. An oxidation condition (\( {\hbox{P}}_{{\hbox{O}}_{\hbox{2}} } \) ∼ 1.0 atm) was maintained during the heating process, and then the specimen was sintered in a reducing atmosphere (\( {\hbox{P}}_{{\hbox{O}}_{\hbox{2}} } \) < 10−9 atm) at 1350 °C, followed by the annealing process at 1000 °C and \( {\hbox{P}}_{{\hbox{O}}_{\hbox{2}} } \) = 1 atm. The switching temperature (TS) from the oxidation atmosphere to the reducing condition was changed from 1100 to 1350 °C. A significant decrease in the room-temperature resisitivity (ρ25) was observed as TS was increased. The temperature coefficient of resistance (TCR) was independent of the change in TS, and closed pores decreased with increasing TS.


BaTiO3 Cation Vacancy Ceramic Body BaTiO3 Ceramic Compensation Mode 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Heywang W (1964) J Am Ceram Soc.47:484CrossRefGoogle Scholar
  2. 2.
    MacChesney JB, Potter JF (1965) J Am Ceram Soc 48:81CrossRefGoogle Scholar
  3. 3.
    Jonker GH (1964) Solid State Electron 7:895CrossRefGoogle Scholar
  4. 4.
    Chiang YM, Birnie DP, Kingery WD (1997) Physical ceramics. John Wiley & Sons, New York, p 230Google Scholar
  5. 5.
    Daniels J, Härdtl KH, Wernicke R (1978/79) Philips Tech Rev 38:73Google Scholar
  6. 6.
    Lewis GV, Catlow CRA, Casselton REW (1985) J Am Ceram Soc 68:555CrossRefGoogle Scholar
  7. 7.
    Moulson AJ, Herbert JM (1993) Electroceramics—materials, properties, applications. Chapman & Hall, London, p 167Google Scholar
  8. 8.
    He Z, Ma J, Qu Y, Feng X (2002) J Euro Ceram Soc 22:2143CrossRefGoogle Scholar
  9. 9.
    Tashiro S, Ishiya T, Igarashi H (1996) Jpn J Appl Phys 35:5074CrossRefGoogle Scholar
  10. 10.
    Osonoi A, Tashiro S, Igarashi H (1997) Jpn J Appl Phys 36:6021CrossRefGoogle Scholar
  11. 11.
    Jeong J, Lee EJ, Han YH (2005) Jpn J Appl Phys 44:4047CrossRefGoogle Scholar
  12. 12.
    Smyth DM (2000) The defect chemistry of metal oxides. Oxford University Press, New York, p 276Google Scholar
  13. 13.
    Kahn M (1971) Am Ceram Soc Bull 50:676Google Scholar
  14. 14.
    Al-Shahrani A, Abboudy S (2000) J Phys Chem Solids 61:955CrossRefGoogle Scholar
  15. 15.
    Lin Tsai-Fa, Hu Chen Ti, Lin I-Nan (1990) J Am Ceram Soc 73:531CrossRefGoogle Scholar
  16. 16.
    Kuwabara M (1981) J Am Ceram Soc 64:639CrossRefGoogle Scholar
  17. 17.
    Kuwabara M (1984) Solid-state Electronics 27:929CrossRefGoogle Scholar
  18. 18.
    Pechini M (1967) U. S. PAT. NO. 3,330,697Google Scholar
  19. 19.
    Sharma RK, Chan NH, Smyth DM (1981) J Am Ceram Soc 64:448CrossRefGoogle Scholar
  20. 20.
    Urek S, Drofenik M (1999) J Euro Ceram Soc 19:913CrossRefGoogle Scholar
  21. 21.
    Makovec D, Ule N, Drofenik M (2001) J Am Ceram Soc 84:1273CrossRefGoogle Scholar
  22. 22.
    Kröger FA, Vink HJ (1956) Seitz F, Turnbull D (eds) Solid state physics. Academic Press, New York, vol 3, p 307Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Department of Materials EngineeringSungkyunkwan UniversityJangan-gu, SuwonKorea
  2. 2.Joinset Co., LtdAnsanKorea

Personalised recommendations