Journal of Materials Science

, Volume 41, Issue 8, pp 2249–2258 | Cite as

Investigation of high-temperature plastic deformation using instrumented microindentation tests. Part II: The deformation of Al-based particulate reinforced composites at 473 K to 833 K

  • V. Bhakhri
  • R. J. KlassenEmail author


Constant-load pyramidal indentation tests were performed from 473 K to 833 K on P/M fabricated 2024 aluminum reinforced with either SiO2, SiC, or Al2O3 particles to investigate the influence of particulate reinforcement on the high-temperature plastic deformation process during indentation. The composites all displayed larger apparent threshold stress σth than the previously reported unreinforced P/M 2024 aluminum alloy. SEM investigation of the indentations indicated that the indentation process is accompanied by considerable cracking and interfacial debonding of the reinforcing particles, the extent of which increases with increasing temperature. The magnitude of σth was largest for the Al2O3 reinforced composite and this is attributed to the load-transfer that occurs when the indenter contacts the reinforcing particles and the superior high-temperature interfacial strength of this composite. The apparent activation energy ΔG0 of the indentation strain rate increased from 0.25µb3 at 473 K to 0.60µb3 at 833 K. These values are within the expected range for weak particles and dislocation-dislocation interactions but are lower than the previously reported Δ0 of the unreinforced P/M 2024 alloy. We conclude that the low indentation strain rate of the particulate reinforced composites is the result of the load transfer due to the presence of the reinforcements and its affect on increasing the σth. The low values of ΔG0 are consistent with our observation that extensive particle cracking and interfacial debonding occur in the reinforced material during indentation.


2024 Aluminum Alloy Apparent Activation Energy Al2O3 Particle Interfacial Debonding Plastic Deformation Process 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. FINOT, Y-L. SHEN, A. NEEDLEMAN and S. SURESH, Metall. Trans. A41 (1994) 885.Google Scholar
  2. 2.
    S. F. CORBIN and D. S. WILKINSON, Acta Metall. Mater. 42 (1994) 1311.CrossRefGoogle Scholar
  3. 3.
    T. CHRISTMAN, A. NEEDLEMAN and S. SURESH S, Acta Metall. Mater. 37 (1989) 3029.Google Scholar
  4. 4.
    G. BAO, Acta Metall. Mater. 40 (1992) 2547.Google Scholar
  5. 5.
    R. J. ARSENAULT, L. WANG and C. R. FENG, Acta Metall Mater. 39 (1991) 47.CrossRefGoogle Scholar
  6. 6.
    P. M. SINGH and J. J. LEWANDOWSKI, Trans. 24A (1993) 2531.Google Scholar
  7. 7.
    W.-J. KIM and O. D. SHERBY, Acta Mater. 48 (2000) 1763.Google Scholar
  8. 8.
    W. J. KIM, J. H. YEON, D. H. SHIN and S. H. HONG, Mat. Sci. Eng. A269 (1999) 142.CrossRefGoogle Scholar
  9. 9.
    W.-J. KIM, D.-W. KUM and H.-G. JEONG, J. Mater. Res. 16 (2001) 2429.Google Scholar
  10. 10.
    D. S. WILKINSON and E. ARTZ, Acta metall 34 (1986) 1893.Google Scholar
  11. 11.
    R. S. W. SHEWFELT and L. M. BROWN, Phil. Mag. 35 (1977) 945.Google Scholar
  12. 12.
    E. ARTZ, G. DEHM, P. GUMBSCH, O. KRAFT and D. WEISS, Prog. Mater. Sci. 46 (2001) 283.Google Scholar
  13. 13.
    K. T. CONLON and D. S. WILKINSON, Mat. Sci. Eng. A317 (2001) 108.Google Scholar
  14. 14.
    D. S. WILKINSON, W. POMPE and M. OESCHNER, Prog. Mater. Sci. 46 (2001) 379.Google Scholar
  15. 15.
    V. BHAKHRI and R. J. KLASSEN, submitted to J. Mat. Sci. (April 2005).Google Scholar
  16. 16.
    W. B. LI, J. L. HENSHALL, R. M. HOOPER and K. E. EASTERLING, Acta Metall. Mater. 39 (1991) 3099.CrossRefGoogle Scholar
  17. 17.
    S. SAIMOTO, B. J. DIAK and K. R. UPADHYAYA, Mater. Sci. Engng. A234 – A236 (1997) 1015.Google Scholar
  18. 18.
    B. J. DIAK and S. SAIMOTO Mater. Sci. Engng. A319 – A321 (2001) 909.Google Scholar
  19. 19.
    A. ELMUSTAFA and D. S. STONE, J. Mech. Phys. Solids 51 (2003) 357.CrossRefGoogle Scholar
  20. 20.
    R. J. KLASSEN, B. J. DIAK and S. SAIMOTO, Mater. Sci. Engng. A387 – 389 (2004) 297.Google Scholar
  21. 21.
    H. J FROST and M. F. ASHBY, “Deformation-Mechanism Maps” (Pergamon Press, Oxford, 1982) p. 21.Google Scholar
  22. 22.
    R. N. SARAF, M.E.Sc “Creep Properties of SiO2 and NiAl Reinforced Composites” (Thesis University of Western Ontario, London Canada, 2003).Google Scholar
  23. 23.
    F. AZARMI, M.E.Sc “Creep Behaviour of Al-Based Composites Made By The P/M Technique” (Thesis University of Western Ontario, London Canada, 2002).Google Scholar
  24. 24.
    J. F. SMITH and S. ZHANG, Surf. Engng. 16 (2000) 143.Google Scholar
  25. 25.
    B. D. BEAKE and J. F. SMITH, Philos. Mag. A8 (2002) 2179.Google Scholar
  26. 26.
    B. D. BEAKE, S. R. GOODES and J. F. SMITH, Z. Metallkd. 7 (2003) 798.CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2006

Authors and Affiliations

  1. 1.Department of Mechanical and Materials Engineering, Faculty of EngineeringUniversity of Western OntarioLondonCanada

Personalised recommendations