Advertisement

Journal of Materials Science

, Volume 41, Issue 8, pp 2271–2279 | Cite as

Stearate intercalated layered double hydroxides: effect on the physical properties of dextrin-alginate films

  • E. P. Landman
  • W. W. Focke
Article

Abstract

Glycerol-plasticized dextrin-alginate films were prepared by solution casting. They contained a fixed amount (16.6% mass/dry film mass) of functional filler based on the reaction products of the LDH, Mg4Al2(OH)12CO3·3H2O, and stearic acid (SA). The films were characterized using infrared (IR) spectroscopy, scanning electron microscopy (SEM) and X-ray diffraction (XRD). The effect of filler composition on water vapour permeability and film stiffness was determined. The ratio of stearic acid (SA) to the LDH (Mg4Al2(OH)12CO3·3H2O) was varied over the full composition range. Infrared spectroscopy and X-ray diffraction studies confirmed that the SA intercalated into the LDH. The Young’s modulus of films attained a maximum value (more than double the value for the neat film) at a filler composition of 60% SA. The water vapour permeability showed a broad minimum at filler compositions of 50–80% SA. Scanning electron microscopy revealed that in this composition range the filler assumes a high-aspect-ratio platelet morphology. This contrasts with the sand rose morphology of the LDH starting material and the globular dispersion of 100% SA in the film.

Keywords

Infrared Spectroscopy Stearic Acid Stearate Composition Range Layered Double Hydroxide 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Y. WU, C. L. WELLER, F. HAMOUZ, S. CUPPETT and M. SCHNEPF, J. Food Sci. 66 (2001) 486.Google Scholar
  2. 2.
    O. R. FENNEMA, S. L. KAMPER and J. J. KESTER, USP 4 915 971, Method for Making an Edible Film and for Retarding Water Transfer Among Multi-Component Food Products, 10 April 1990.Google Scholar
  3. 3.
    R. J. AVENA-BUSTILLOS and J. M. KROCHTA, J. Food Sci. 58 (1993) 904.CrossRefGoogle Scholar
  4. 4.
    M. ALEXANDRE and P. DUBOIS, Mater. Sci. Eng. R 28 (2000) 1.Google Scholar
  5. 5.
    A. J. F. DE CARVALHO, A. A. S. CURVELO and J. A. M. AGNELLI, Carbohydr. Polym. 45 (2001) 189.Google Scholar
  6. 6.
    H.-M. WILHELM, M.-R. SIERAKOWSKI, G.P. SOUZA and F. WYPYCH, ibid. 52 (2003) 101.Google Scholar
  7. 7.
    Idem. Polym. Int. 52 (2003) 1035.Google Scholar
  8. 8.
    D. W. S. WONG, K. S. GREGORSKI, J. S. HUDSON and A. E. PAVLATH, J. Food Sci. 61 (1996) 337.CrossRefGoogle Scholar
  9. 9.
    S. MIYATA and T. KUMURA, Chem. Lett. (1973) 843.Google Scholar
  10. 10.
    T. ITOH, N. OHTA, T. SHICHI, T. YUI and K. TAKAGI, Langmuir 19 (2003) 9120.CrossRefGoogle Scholar
  11. 11.
    M. ADACHI-PAGANO, C. FORANO and J.-P. BESSE, Chem. Commun. (2000) 91.Google Scholar
  12. 12.
    A. WEXLER, in “Handbook of Physics and Chemistry,” 79th ed., edited by D. R. Lide (CRC Press, Boca Raton, 1998) p. 15.Google Scholar
  13. 13.
    J. M. KROCHTA and C. DE MULDER-JOHNSTON, Food Technol. 51 (1997) 61.Google Scholar
  14. 14.
    M. BORJA and P. K. DUTTA, J. Phys. Chem. 96 (1992) 5434.Google Scholar
  15. 15.
    T. H. MCHUGH, R. AVENA-BUSTILLOS and J. M. KROCHTA, J. Food Sci. 58 (1993) 899.CrossRefGoogle Scholar
  16. 16.
    T. KANOH, T. SHICHI and K. TAKAGI, Chem. Lett. (1999) 117.Google Scholar
  17. 17.
    J. F. MEAD, R. B. ALFIN-SLATER, D. R. HOWTON and G. POPJÁK, in “Lipids: Chemistry, Biochemistry and Nutrition” (Plenum Press, New York, 1986) p. 53.Google Scholar
  18. 18.
    W.T. ASTBURY, Nature 155 (1945) 167.Google Scholar
  19. 19.
    R. L. WHISTLER and J. N. BEMILLER, in “Carbohydrate Chemistry for Food Scientists” (Eagan Press, St. Paul, Minnesota, 1997) p. 196.Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2006

Authors and Affiliations

  1. 1.Institute of Applied MaterialsUniversity of PretoriaPretoriaRepublic of South Africa

Personalised recommendations