Advertisement

Journal of Materials Science

, Volume 41, Issue 8, pp 2333–2338 | Cite as

Effect of Pt/alumina catalyst preparation method on sensing performance of thermoelectric hydrogen sensor

  • Y. Choi
  • K. Tajima
  • W. Shin
  • N. Izu
  • I. Matsubara
  • N. Murayama
Article

Abstract

We fabricated three different Pt/alumina catalysts for micro-thermoelectric hydrogen sensor (micro-THS). In the three Pt/alumina catalysts, two were prepared by impregnation of a commercial alumina with an aqueous solution of platinum (IV) chloride pentahydrate, and the third was prepared by impregnation of commercial alumina and nano-Pt with isobornyl acetate solution. To fabricate the micro-THS, the three Pt/alumina catalysts were integrated on thin membrane of the micro-THS, and its hydrogen sensing properties were investigated. The micro-THS with nano-Pt loaded alumina catalyst showed better sensing performance than those with Pt/alumina catalysts prepared by an aqueous solution of platinum (IV) chloride pentahydrate, because of effectively dispersed nano-Pt metal grain on the surface alumina grain observed by TEM. Its voltage signal was 15.7 mV for hydrogen concentration of 1% in dry air at catalyst temperature of 100°C.

Keywords

Aqueous Solution Platinum Preparation Method Hydrogen Concentration Catalyst Preparation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    I. LUNDSTROM, S. SHIVARAMAN, C. SVENSSON and L. LUNDKVIST, Appl. Phys. Lett. 26 (1975) 55.CrossRefGoogle Scholar
  2. 2.
    K. DOBOS, R. STROTMAN and G. ZIMMER, Sens. Actuators 4 (1983) 593.Google Scholar
  3. 3.
    J. P. HALL, R. W. WHATMORE and F. W. AINGER, Ferroelectrics 54 (1984) 551.Google Scholar
  4. 4.
    M. A. BUTLER, Phys. Lett. 45 (1984) 1007.Google Scholar
  5. 5.
    J. F. MCALEER, P. T. MOSELEY, P. BOURKE, J. O. NORRIS and R. STEPHAN, Sens. Actuators 8 (1985) 251.Google Scholar
  6. 6.
    H. BALTES, ibid. A 56 (1996) 179.Google Scholar
  7. 7.
    W. SHIN, K. IMAI, N. IZU and N. MURAYAMA, Jpn. J. Appl. Phys. 40 (2001) L1232.CrossRefGoogle Scholar
  8. 8.
    M. MATSUMIYA, W. SHIN, N. IZU and N. MURAYAMA, Sens. Actuators B 93 (2003) 309.CrossRefGoogle Scholar
  9. 9.
    W. SHIN, M. MATSUMIY, N. IZU and N. MURAYAMA, ibid. 93 (2003) 304.Google Scholar
  10. 10.
    K. TAJIMA, F. QIU, W. SHIN, N. SAWAGUCHI, N. IZU, I. MATSUBARA and N. MURAYAMA, Jpn. J. Appl. Phys. 43 (2004) 5978.Google Scholar
  11. 11.
    W. SHIN, K. TAJIMA, Y. CHOI, N. IZU, I. MATSUBARA and N. MURAYAMA, Sen. Actuators B, 108 (2005) 455.Google Scholar
  12. 12.
    K. TAJIMA, Y. CHOI, W. SHIN, N. IZU, I. MATSUBARA and N. MURAYAMA, Key Enging. Mater,. 301 (2006) 273.Google Scholar
  13. 13.
    Y. CHOI, K. TAJIMA, W. SHIN, N. IZU, I. MATSUBARA and N. MURAYAMA, Appl. Catal. A, 287 (2005) 19.Google Scholar
  14. 14.
    G. K. WILLIAMSON and W. H. HALL. Acta Metall. 1 (1953) 22.Google Scholar
  15. 15.
    P. MARECOT, A. FAKCHE, B. KELLALI, G. MABILON, P. PRIGENT and J. BARBIER, Appl. Catal. B 3 (1994) 283.Google Scholar
  16. 16.
    K. TAJIMA, F. QIU, W. SHIN, N. IZU, I. MATSUBARA and N. MURAYAMA, Sen. Actuators B, 108 (2005) 973.Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2006

Authors and Affiliations

  • Y. Choi
    • 1
  • K. Tajima
    • 1
  • W. Shin
    • 1
  • N. Izu
    • 1
  • I. Matsubara
    • 1
  • N. Murayama
    • 1
  1. 1.National Institute of Advanced Industrial Science and TechnologyNagoyaJapan

Personalised recommendations