Advertisement

Journal of Materials Science

, Volume 42, Issue 19, pp 8062–8070 | Cite as

Commingled yarns of surface nanostructured glass and polypropylene filaments for effective composite properties

  • Edith MäderEmail author
  • Christina Rothe
  • Shang-Lin Gao
Polymer Fibres 2006

Abstract

Developing commingled yarn technologies and understanding the fundamental interface nanostructures of reinforcement and thermoplastic filaments are of significant current interest. Previous research on commingled yarns was mainly focused on the air-jet texturing process, while the mechanical properties of the composites are strongly influenced by the impregnation homogeneity, the polymer sizing properties and consolidation process. Here, we report a unique melt spinning equipment for E-glass fiber which is compatibly combined with a melt spinning extruder to manufacture commingled yarns. The in-situ commingling enables to combine homogeneously both glass and polypropylene filament arrays in one processing step and without fiber damage compared to commingling by air texturing. Variation of processing conditions are investigated, i.e. sizings, diameter ratios, and arrangements of sizing/finish application related to intermingling of filament arrays. A rapid processing is achieved because of good intermingling and the low flow paths. We found that the sizing enables a good strand integrity with the polypropylene yarn. The interfacial adhesion can be improved with a sizing for glass fibers consisting of aminosilane and maleic anhydride grafted polypropylene film former, which results in both improved transverse tensile strength and compression shear strength. We also found that a very small amount of single-wall carbon nanotubes (SWNTs) in the sizing provides significantly improved interfacial adhesion strength. This is attributed to the change in fracture behavior of the nano-structured interface and morphology of the model single-fiber composites.

Keywords

Glass Fiber Maleic Anhydride Filament Diameter Hybrid Yarn Fiber Tensile Strength 

Notes

Acknowledgments

This work was supported by the German Research Foundation (DFG) within the Collaborative Research Centre ‘Textile-reinforced composite components for function-integrating multi-material design in complex lightweight applications (SFB639)’. The authors are indebted to Dr. H. Brünig, B. Tändler and N. Smolka (Spinning of PP), W. Ehrentraut, F. Eberth, R. Plonka (Spinning of GF) and Jianwen Liu for technical assistance.

References

  1. 1.
    Svensson N, Shishoo R (1998) J Thermoplastic Compos Mater 11:22CrossRefGoogle Scholar
  2. 2.
    Ruan XP, Chou TW (1996) Comp Sci Technol 56:198CrossRefGoogle Scholar
  3. 3.
    http://www.tu-dresden.de/mw/ilk/sfb639/sfb_en.htmlGoogle Scholar
  4. 4.
    Wakeman MD, Cain TA, Rudd CD (1998) Comp Sci Technol 58:1879CrossRefGoogle Scholar
  5. 5.
    Alagirusamy R (2004) J Ind Textiles 33:223CrossRefGoogle Scholar
  6. 6.
    Hamada H, Maekawa Z, Ikegawa N, Matsuo T (1993) Polym Compos 14:308CrossRefGoogle Scholar
  7. 7.
    Ye L, Friedrich K (1993) Comp Sci Technol 46:187CrossRefGoogle Scholar
  8. 8.
    Ye L, Friedrich K (1993) J Mater Sci 28:773 DOI: 10.1007/BF01151255CrossRefGoogle Scholar
  9. 9.
    Mäder E, Bunzel U, Schemme M (1994) Chemiefasern/Textilindustrie 37:11Google Scholar
  10. 10.
    Offermann P, Wulfhorst B, Mäder E (1995) Technische Textilien/Technical Textiles 38:55Google Scholar
  11. 11.
    Shonaike GO, Hamada H, Maekawa Z (1996) J Thermoplastic Compos Mater 9:76CrossRefGoogle Scholar
  12. 12.
    Stumpf H, Mäder E, Baeten S, Pisanikovski T, Zäh W, Eng K, Andersson CH, Verpoest I, Schulte K (1998) Composites/Part A 29:1511CrossRefGoogle Scholar
  13. 13.
    Mäder E, Skop-Cardarella K (1997) Key Eng Mater 137:24CrossRefGoogle Scholar
  14. 14.
    Bogoeva-Gaceva G, Mäder E, Queck H (2000) J Thermoplastic Compos Mater 13:363CrossRefGoogle Scholar
  15. 15.
    Long AC, Wilks CE, Rudd CD (2001) Comp Sci Technol 61:1591CrossRefGoogle Scholar
  16. 16.
    Vendramini J, Bas C, Merle G (2000) Polym Compos 21:724CrossRefGoogle Scholar
  17. 17.
    Bernet N, Michaud V, Bourban PE, Manson JAE (2001) Composites Part A 32:1613CrossRefGoogle Scholar
  18. 18.
    Putnoki I, Moos E, Karger-Kocsis J (1999) Plastics, Rubber Compos 28:40CrossRefGoogle Scholar
  19. 19.
    Lariviere D, Krawczak P, Tiberi C, Lucas P (2005) Polym Polym Compos 13:27Google Scholar
  20. 20.
    Gao SL, Mäder E (2002) Composites/Part A 33:559CrossRefGoogle Scholar
  21. 21.
    Tong L, Mouritz AP, Bannister M (2002) 3D fibre reinforced polymer composites. Elsevier Science, OxfordCrossRefGoogle Scholar
  22. 22.
    Gao SL, Mäder E, Plonka R (2007) Acta Mater 55:1043CrossRefGoogle Scholar
  23. 23.
    Report Aif-Nr. 322d (1993) Report Aif-Nr. 10039 B (1996) Report Aif-Nr. 11644b (2000) Leibniz-Institut Für Polymerforschung Dresden e.VGoogle Scholar
  24. 24.
    Online.Hybridgarnspinnen Von Glasfaser- Und Thermoplastfilamenten (2005) Jahresbericht Leibniz-Institut Für Polymerforschung Dresden e.V., p 64Google Scholar
  25. 25.
    Weibull W (1951) J Appl Mech 18:293Google Scholar
  26. 26.
    Zhandarov S, Pisanova E, Mäder E (2000) Compos Interface 7:149CrossRefGoogle Scholar
  27. 27.
    Nairn JA (2000) Adv Compos Lett 9:373Google Scholar
  28. 28.
    Kaw AK (2006) Mechanics of composite materials, 2nd edn. ISBN: 0–8493–1343–0, Crc PressGoogle Scholar
  29. 29.
    Mäder E, Rothe C, Liu JW (2005) Proc Technomer. Chemnitz, p 39 (CD-ROM: 1–15)Google Scholar
  30. 30.
    Gojny FH, Wichmann MHG, Fiedler B et al (2005) Comp Sci Technol 65:2300CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Department of CompositesLeibniz Institute of Polymer Research DresdenDresdenGermany

Personalised recommendations