Journal of Materials Science

, Volume 42, Issue 16, pp 6729–6734 | Cite as

Macro, micro and nanostructure of TiO2 anodised films prepared in a fluorine-containing electrolyte

  • Angkhana Jaroenworaluck
  • Domenico RegoniniEmail author
  • Chris R. Bowen
  • Ron Stevens
  • Duncan Allsopp


The paper presents an electron microscopy study of the macro, micro and nanostructure of titania nano-tubes formed by electrochemical anodisation of titanium in a fluorine containing electrolyte. Scanning electron microscopy (SEM) is used to examine the overall structure of the nano-tubes formed under potentiostatic conditions. Transmission electron microscopy (TEM) has been used to examine the structure of the oxide layer of a sample anodised for a relatively short period (30 min) and provides a new insight into the formation of titania nano-tubes. The fluorine ions are able to nucleate sites on the titanium metal and generate a series of interconnected cavities or pores in the oxide complex formed, allowing current to flow within this film. Under specific conditions the cavities and randomly dispersed pores can align in the direction of the applied electric field and link up to generate an array of tubes, where the passage of ions and water is optimised. We also suggest that oxygen evolution at the anode may play a role in the development of the nano-tubes.


TiO2 Anodic Oxide Cavity Wall Chemical Dissolution Anodic Layer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The Royal Academy of Engineering, The Worshipful Company of Armourers and Brasiers and Novelis are gratefully acknowledged for the financial contribution provided in support of this work. The Nanotechnology Centre of the Cranfield University is also acknowledged for FE-SEM measurements.


  1. 1.
    Zhu X, Kim KH, Jeong Y (2001) Biomaterials 22:2199CrossRefGoogle Scholar
  2. 2.
    Yang B, Uchida M, Kim HM, Zhang X, Kokubo T (2004) Biomaterials 25:1003CrossRefGoogle Scholar
  3. 3.
    Oh SH, Finõnes RR, Daraio C, Cen LH, Jin S (2005) Biomaterials 26:4938CrossRefGoogle Scholar
  4. 4.
    Mor GK, Carvalho MA, Pishko MV, Grimes CA (2004) J Mater Res 19:628CrossRefGoogle Scholar
  5. 5.
    Varghese OK, Grimes CA (2003) J Nanosci Nanotechnol 3:277CrossRefGoogle Scholar
  6. 6.
    Varghese OK, Gong D, Paulose M, Ong KG, Grimes CA (2003) Sens Actuat B 93:338CrossRefGoogle Scholar
  7. 7.
    Varghese OK, Gong D, Paulose M, Ong KG, Dickey EC, Grimes CA (2003) Adv Mater 15:624CrossRefGoogle Scholar
  8. 8.
    Fox MA, Dulay MT (1993) Chem Rev 93:341CrossRefGoogle Scholar
  9. 9.
    Hoffmann MR, Martin ST, Choi W, Bahnemannt DW (1995) Chem Rev 95:69CrossRefGoogle Scholar
  10. 10.
    Mills A, Hill G, Bhopal S, Parkin IP, O’Neill SA (2003) J Photochem Photobiol A: Chem 160:185CrossRefGoogle Scholar
  11. 11.
    Mor GK, Shankar K, Varghese OK, Grimes CA (2004) J Mater Res 19:2989CrossRefGoogle Scholar
  12. 12.
    Reddy BM, Ganesh I, Khan A (2004) J Mol Catal A: Chem 223:295CrossRefGoogle Scholar
  13. 13.
    Jang HD, Kim S-K, Kim S-J (2001) J Nanoparticle Res 3:141CrossRefGoogle Scholar
  14. 14.
    Minabe T, Tryk DA, Sawunyama P, Kikuchi Y, Hashimoto K, Fujishima A (2000) J Photochem Photobiol A: Chem 137:53CrossRefGoogle Scholar
  15. 15.
    Mor GK, Shankar K, Paulose M, Varghese OK, Grimes CA (2005) Nano Lett 5:191CrossRefGoogle Scholar
  16. 16.
    Grätzel M (2003) J Photochem Photobiol C: Photochem Rev 4:145CrossRefGoogle Scholar
  17. 17.
    Park JH, Kim S, Bard AJ (2006) Nano Lett 6:24CrossRefGoogle Scholar
  18. 18.
    Grätzel M (2001) Nature 414:338CrossRefGoogle Scholar
  19. 19.
    Longo C, De Paoli MA (2003) J Braz Chem Soc 14:889CrossRefGoogle Scholar
  20. 20.
    Macák JM, Tsuchiya H, Ghicov A, Schmuki P (2005) Electrochem Commun 7:1133CrossRefGoogle Scholar
  21. 21.
    Mor GK, Shankar K, Paulose M, Varghese OK, Grimes CA (2006) Nano Lett 6:215CrossRefGoogle Scholar
  22. 22.
    Mor GK, Varghese OK, Paulose M, Shankar K, Grimes CA (2006) Sol Energy Mater Sol Cells 90:2011CrossRefGoogle Scholar
  23. 23.
    Park N-G, Van de Lagemaat J, Frank AJ (2000) J Phys Chem B 104:8989CrossRefGoogle Scholar
  24. 24.
    Wang X, Fujimaki M, Awazu K (2005) Optics Expr 13:1486CrossRefGoogle Scholar
  25. 25.
    Zwilling V, Darque-Ceretti E, Boutry-Forveille A, David D, Perrin MY, Aucouturier M (1999) Surf Interface Anal 27:629CrossRefGoogle Scholar
  26. 26.
    Macak JM, Sirotna K, Schmuki P (2005) Electrochim Acta 50:3679CrossRefGoogle Scholar
  27. 27.
    Gong D, Grimes CA, Varghese OK, Hu W, Singh RS, Chen Z, Dickey EC (2001) J Mater Res 16:3331CrossRefGoogle Scholar
  28. 28.
    Taveira LV, Macák JM, Tsuchiya H, Dick LFP, Schmuki P (2005) J Electrochem Soc 152:B405CrossRefGoogle Scholar
  29. 29.
    Macak JM, Tsuchiya H, Taveira L, Aldabergerova S, Schmuki P et al (2005) Angew Chem Int Ed 44:7463CrossRefGoogle Scholar
  30. 30.
    Paulose M, Shankar K, Yoriya S, Prakasam HE, Varghese OK, Mor GK, Latempa TA, Fitzgerald A, Grimes CA (2006) J Phys Chem B 110:16179CrossRefGoogle Scholar
  31. 31.
    Zhao J, Wang X, Chen R, Li L (2005) Solid State Commun 134:705CrossRefGoogle Scholar
  32. 32.
    Mor GK, Varghese OK, Paulose M, Mukherjee N, Grimes CA (2003) J Mater Res 18:2588CrossRefGoogle Scholar
  33. 33.
    Choi J, Wehrspohn RB, Lee J, Gösele U (2004) Electrochim Acta 49:2645CrossRefGoogle Scholar
  34. 34.
    Macak JM, Tsuchiya H, Schmuki P (2005) Angew Chem Int Ed 44:2100CrossRefGoogle Scholar
  35. 35.
    Lohrengel MM (1993) Mater Sci Eng R: Report 11:243CrossRefGoogle Scholar
  36. 36.
    Rahim MAA (1995) J Appl Electrochem 25:881CrossRefGoogle Scholar
  37. 37.
    Cai Q, Paulose M, Varghese OK, Grimes CA (2005) J Mater Res 20:230CrossRefGoogle Scholar
  38. 38.
    Regonini D, Bowen CR, Stevens R, Allsopp D, Jaroenworaluck A (accepted) Phys. Status Solidi A Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Angkhana Jaroenworaluck
    • 1
  • Domenico Regonini
    • 2
    Email author
  • Chris R. Bowen
    • 2
  • Ron Stevens
    • 2
  • Duncan Allsopp
    • 3
  1. 1.MTEC: National Metal and Materials Technology CenterKlong LuangThailand
  2. 2.Materials Research Centre, Department of Mechanical EngineeringUniversity of BathBathUK
  3. 3.Department of Electronic & Electrical EngineeringUniversity of BathBathUK

Personalised recommendations