Advertisement

Journal of Materials Science

, Volume 42, Issue 3, pp 779–783 | Cite as

Microstructure and magnetic properties of Ni1−xZnxFe2O4 synthesized by combustion reaction

  • Ana Cristina F. M. Costa
  • Márcio R. Morelli
  • Ruth H. G. A. KiminamiEmail author
Article

Abstract

An investigation was made of samples having a chemical formula of Ni1−xZnxFe2O4, where x = 0.3, 0.5 and 0.7. The samples were prepared by the reaction combustion synthesis method and sintered at 1,200 °C/2 h in a static air atmosphere. The influence of the Zn concentration on the relative density, microstructure and magnetic properties of the samples was studied. X-ray diffraction, scanning electron microscopy and magnetic hysteresis loop tracer were used to analyze the compositions. The samples were found to have a spinel cubic structure, sintered density of 92.9%–98.8% of the corresponding X-ray density, homogeneous microstructure with grain size ranging from 1.37 to 3.36 μm, maximum flux density of 0.16–0.35 T, field coercivity ranging from 17 to 168 A/m, and loss hysteresis of 1.5–105 W/kg. Increased grain growth, with fine pores inside the grains, was found to occur as the Zn concentration increased. The overall findings are discussed here in light of the existing understanding of these systems.

Keywords

Ferrite Combustion Reaction Nickel Ferrite Intergranular Porosity Fe2O4 System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The authors gratefully acknowledge the financial support of CAPES and CNPq (Brazil)

References

  1. 1.
    Ravindernathan P, Patil KC (1987) J Mater Sci 22:3261CrossRefGoogle Scholar
  2. 2.
    Igarashi H, Okazaki K (1977) J Am Ceram Soc 60:51CrossRefGoogle Scholar
  3. 3.
    Goldman A (1984) Bull Am Ceram Soc 63:582Google Scholar
  4. 4.
    Rana MU, Abbas T (2002) J Magn Magn Mater 246:110CrossRefGoogle Scholar
  5. 5.
    El-Sayed AM (2002) Ceram Int 28:363CrossRefGoogle Scholar
  6. 6.
    Gonchar A, Gorelik S, Katynkina S, Letyuk L, Ryabov I (2000) J Magn Magn Mater 215–216:221CrossRefGoogle Scholar
  7. 7.
    Pramanik P, Pathak A (1994) Bull Mater Sci 17(6):967CrossRefGoogle Scholar
  8. 8.
    Costa ACFM, Tortella E, Morelli MR, Kaufman MJ, Kiminami RHGA (2002) J Mater Sci 37:3569CrossRefGoogle Scholar
  9. 9.
    Costa ACFM, Tortella E, Morelli MR, Kiminami RHGA (2002) Mater Sci Forum 403:57CrossRefGoogle Scholar
  10. 10.
    Costa ACFM (2001) PhD thesis, In Portuguese, Universidade Federal de São Carlos, BrazilGoogle Scholar
  11. 11.
    Sekar MMA, Patil KC (1992) J Mater Chem 2(7):739CrossRefGoogle Scholar
  12. 12.
    Kiminami RHGA (2001) J KONA 19:156CrossRefGoogle Scholar
  13. 13.
    Sousa VC de, Castro MS, Morelli MR, Kiminami RHGA (2002) J Mater Sci Mater Electron 13:319CrossRefGoogle Scholar
  14. 14.
    Segadães AM, Morelli MR, Kiminami RHGA (1998) J Eur Ceram Soc 18(7):771CrossRefGoogle Scholar
  15. 15.
    Ravindranathan CS, Hong P, Agraval DK, Roy R (1994) J Mater Sci Lett 12:1072Google Scholar
  16. 16.
    Ravindranathan P, Komarneni S, Roy R, (1993) J Mater Sci Lett 12:369CrossRefGoogle Scholar
  17. 17.
    Dhas A, Patil KC (1994) Ceram Int 20:57CrossRefGoogle Scholar
  18. 18.
    Jain SR, Adiga KC, Pai Verneker VR (1981) Combust Flame 40:71CrossRefGoogle Scholar
  19. 19.
    Prakash C, Baijal JS (1984) Solid State Commun 50:557CrossRefGoogle Scholar
  20. 20.
    Verma A, Goel TC, Mendiratta RG, Kishan P (2000) J Magn Magn Mater 208:13CrossRefGoogle Scholar
  21. 21.
    Pyun SI, Baek JT (1985) Am Ceram Soc Bull 64(4):602Google Scholar
  22. 22.
    Ahns SJ, Yoon CS, Yoon SG, Kim CK, Byun TY, Hong KS (2001) Mater Sci Eng B84:146CrossRefGoogle Scholar
  23. 23.
    Goldman A (1991) Magnetic Ceramics (Ferrites), Ferrite Technology Worldwide Inc. Engineered Materials Handbook, Ceramics and Glasses, ASM International 4, p 1161Google Scholar
  24. 24.
    Gorte EW (1954) Philips Res Rep 9:295Google Scholar
  25. 25.
    Bercoff PG, Bertorello HR (2000) J Magn Magn Mater 213:56CrossRefGoogle Scholar
  26. 26.
    Znidarsic A, Drofenik M (1996) IEEE Trans Magn 32(3):1941CrossRefGoogle Scholar
  27. 27.
    Zhiyuan L, Maoren X, Qingqiu Z (2000) J Magn Magn Mater 219:9CrossRefGoogle Scholar
  28. 28.
    Bhise BV, Dongare MB, Patil SA, Sawant SR (1991) J Mater Sci Lett 10:922CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Ana Cristina F. M. Costa
    • 1
  • Márcio R. Morelli
    • 2
  • Ruth H. G. A. Kiminami
    • 2
    Email author
  1. 1.Department of Materials EngineeringFederal University of ParaíbaCampina GrandeBrazil
  2. 2.Department of Materials EngineeringFederal University of São CarlosSão CarlosBrazil

Personalised recommendations