Journal of Materials Science

, Volume 42, Issue 16, pp 6913–6916 | Cite as

Effect of size non-uniformity on photoluminescence from ensembles of InAs quantum dots embedded in GaAs

  • Naiyun TangEmail author


The photoluminescence (PL) spectrum from ensembles of InAs/GaAs quantum dots (QDs) is calculated. The effect of the dot size distribution and the variation of the associated confining potentials on the PL spectra are estimated. It is found that the intermixing of the interfaces causes an increase of the PL spectra energy. The size distribution determines the spectrum width and makes the PL line shape asymmetric with a high-energy tail. Moreover, the non-uniform size distribution also results in a redshift of the PL peak. The experimental PL spectrum is well explained by the size distribution and intermixing effect within the effective mass approximation.


Effective Mass Approximation Size Distribution Effect Large Transition Energy Suitable Normalization Constant Interface Intermix 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by the Foundation of the Ministry of Education of Shanghai for Outstanding Young Teachers in University (Grant No. B01601) and the Foundation of Priority Academic Discipline of Shanghai, China (Grant No: P1303).


  1. 1.
    Petroff PM, Schmidt KH, Ribeiro GM, Lorke A, Kotthaus J (1997) Jpn J Appl Phys 36:4068CrossRefGoogle Scholar
  2. 2.
    Mukhametzhanov I, Wei Z, Heitz R, Madhukar A (1999) Appl Phys Lett 75:85CrossRefGoogle Scholar
  3. 3.
    Ji Y, Lu W, Chen G, Chen X (2002) J Appl Phys 93:1028Google Scholar
  4. 4.
    Ji Y, Chen G, Tang N et al (2003) Appl Phys Lett 82:2802Google Scholar
  5. 5.
    Lifshitz IM (1964) Adv Phys 42:483CrossRefGoogle Scholar
  6. 6.
    Kane CL, Lee PA, Ng TK et al (1990) Phys Rev B 41:2653CrossRefGoogle Scholar
  7. 7.
    Swierkowski L, Szymanski J, Gortel ZW (1995) Phys Rev Lett 74:3245CrossRefGoogle Scholar
  8. 8.
    Chen X, Zhao J, Wang G, Shen X (1996) Phys Lett A 212:285CrossRefGoogle Scholar
  9. 9.
    Wojs A, Hawry P, Fafard S (1996) Phys Rev B 54:5604CrossRefGoogle Scholar
  10. 10.
    Fafard S, Allen CN (1999) Appl Phys Lett 75:2374CrossRefGoogle Scholar
  11. 11.
    Dubowski JJ, Allen CN, Fafard S (2000) Appl Phys Lett 77:3583CrossRefGoogle Scholar
  12. 12.
    Perret N, Morris D, Franchomme-Fosse L, Cote R et al (2000) Phys Rev B 62:5092Google Scholar
  13. 13.
    Ji Y, Lu W, Chen G et al (2003) J Appl Phys 93:1208CrossRefGoogle Scholar
  14. 14.
    Trwoga PF, Kenyon AJ, Pitt CW (1998) J Appl Phys 83:3789CrossRefGoogle Scholar
  15. 15.
    Kohli S, Theil JA, Snyder RD et al (2003) J Vac Sci Technol B 21:719CrossRefGoogle Scholar
  16. 16.
    Cheng W-Q, Xie XG, Zhong ZY (1998) Thin Solid Films 312:287CrossRefGoogle Scholar
  17. 17.
    Dubowski JJ, Allen CN, Fafard S (2000) Appl Phys Lett 77:3583CrossRefGoogle Scholar
  18. 18.
    Lobo C, Leon R (1998) Appl Phys Lett 72:2850CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Department of Electronic Science and TechnologyShanghai University of Electric PowerShanghaiChina

Personalised recommendations