Advertisement

Journal of Materials Science

, Volume 42, Issue 3, pp 1037–1041 | Cite as

Sintering effects on structure and dielectric properties of dielectrics CaCu3Ti4O12

  • W. Q. Ni
  • X. H. ZhengEmail author
  • J. C. Yu
Letter

Introduction

Due to the continuous demand for miniaturization of electronics, there is an interest in developing dielectric materials with higher permittivity. Recently, the CaCu3Ti4O12 (CCTO) has been reported [1, 2, 3], has a very high permittivity (∼104) at room temperature and very small temperature dependence in a broad temperature range. However, it appears that the dielectric properties of CCTO are very sensitive to processing. [4, 5, 6, 7] Permittivities from 478 to 300,000 have been obtained for CCTO prepared by different routes. The original work, done by Subramanian et al. [1] and Ramirez et al. [2] using conventional mixed-oxide processing via mortar and pestle, showed that room temperature permittivities ranged from 10,000 to 20,000. Other researchers using the same technique have reported permittivities of 478, 2400 and 18,700 [8, 9, 10]. The highest permittivity reported as derived from impedance spectroscopy measurements was 300,000 for CCTO made from powder that was...

Keywords

Dielectric Property Dielectric Loss Sinter Time High Permittivity CCTO Ceramic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The present work was supported by Fujian Science Fund for Young Scholars (No. 2005J012), and Fuzhou University Science Foundation (No. XJY0413, No. 2005-XY-01).

References

  1. 1.
    Subramanian MA, Li D, Duan N, Reisner BA, Sleight AW (2000) J Solid State Chem 151:323CrossRefGoogle Scholar
  2. 2.
    Ramirez AP, Subramanian MA, Gardel M, Blumberg G, Li D, Vogt T (2000) Solid State Commun 115:217CrossRefGoogle Scholar
  3. 3.
    Homes CC, Vogt T, Shapiro SM, Wakimoto S, Ramirez AP (2001) Science 121:625Google Scholar
  4. 4.
    Ni L, Chen XM, Liu XQ, Hou RZ (2006) Solid State Commun 139:45CrossRefGoogle Scholar
  5. 5.
    Almeida AFL, Fechine PBA, Kretly LC, Sombra ASB (2006) J Mater Sci 41:4623CrossRefGoogle Scholar
  6. 6.
    Guillemet-Fritsch S, Lebey T, Boulos M, Durand B (2006) J Eur Ceram Soc 26:1245CrossRefGoogle Scholar
  7. 7.
    Shri Prakash B, Varma KBR (2006) Phys B 382:312CrossRefGoogle Scholar
  8. 8.
    Choudhary RNP, Bhunia B (2002) Mater Sci 37:5177CrossRefGoogle Scholar
  9. 9.
    Jha P, Arora P, Ganguli AK (2003) Mater Lett 57:2443CrossRefGoogle Scholar
  10. 10.
    Sinclair DC, Adams TB, Morrison FD, West AR (2002) Appl Phys Lett 80:2153CrossRefGoogle Scholar
  11. 11.
    Adams TB, Sinclair DC, West AR (2002) Adv Mater 14:1321CrossRefGoogle Scholar
  12. 12.
    Zhang L, Tang ZJ (2004) Phys Rev B 70:174306CrossRefGoogle Scholar
  13. 13.
    West AR, Adams TB, Morrison FD, Sinclair DC (2004) J Eur Ceram Soc 24:1439CrossRefGoogle Scholar
  14. 14.
    Chiodelli G, Massarotti V, Capsoni D, Bini M, Azzoni CB, Mozzati MC, Lupotto P (2004) Solid State Commun 132:241CrossRefGoogle Scholar
  15. 15.
    Capsoni D, Bini M, Massarotti V, Chiodelli G, Mozzatic MC, Azzoni CB (2004) J Solid State Chem 177:4494CrossRefGoogle Scholar
  16. 16.
    Homes CC, Vogt T, Shapiro SM, Wakimoto S, Subramanian S (2003) Phys Rev B 67:092106CrossRefGoogle Scholar
  17. 17.
    Cohen MH, Neaton JB, He LX, Vanderbilt D (2003) J Appl Phys 94:3299CrossRefGoogle Scholar
  18. 18.
    Fang TT, Shiau HK (2004) J Am Ceram Soc 87:2072CrossRefGoogle Scholar
  19. 19.
    Zhang L (2005) Appl Phys Lett 87:022907CrossRefGoogle Scholar
  20. 20.
    Lu FH, Fang FX, Chen YS, (2001) J Eur Cream Soc 21:1093CrossRefGoogle Scholar
  21. 21.
    Zhang JL, Zheng P, Wang CL, Zhao ML, Li JC, Wang JF, (2005) Appl Phys Lett 87:142901CrossRefGoogle Scholar
  22. 22.
    Matos M, Walmsley L (2006) J Phys: Condens Matter 18:1793Google Scholar
  23. 23.
    Fang L, Shen M, Cao W (2004) J Appl Phys 95:956483Google Scholar
  24. 24.
    Shao SF, Zhang JL, Zhang P, Zhong WL, Wang CL, (2006) J Appl Phys 99:084106CrossRefGoogle Scholar
  25. 25.
    Li JR, Cho K, Wu NJ, Ignatiev A (2004) IEEE T Dielect El In 11:534Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.College of Materials Science and EngineeringFuzhou UniversityFuzhouChina

Personalised recommendations