Journal of Materials Science

, Volume 42, Issue 16, pp 6769–6778 | Cite as

Wear behavior of TiB2 inoculated 20Cr–3Mo–4C high chromium white cast irons

  • Serdar Osman YilmazEmail author


FeTi, B2O3, Al, and FeW particulates, approximately 40–60 μm in size, were mixed in stoichiometric ratio and sintered at 1,200 °C. The sintered particulates were added as 5 wt% to molten high chromium white cast iron over 50 C-deg above the melting temperature, and stirred at 1,000 rpm. The samples were investigated in three groups: (1) high Cr white cast iron inoculated by the particulates sintered from Al–FeTi–B2O3 particulates; (2) high Cr white cast iron inoculated by the sintered particulates derived from Al–FeTi, B2O3, and FeW particulates; and (3) specimens of the second group that were subsequently homogenized. The microhardness of ceramic particulates was measured as 2,800–3,400 HV10. The effect of sintered particulate volume fraction on the abrasive wear resistance of the high chromium white cast iron was determined. The wear resistance and hardness of the composites improved significantly as a result of particulate inoculation. The application of the homogenization heat treatment to the inoculated samples produced a microstructure having homogeneously distributed particulates.


Carbide Austenite Wear Rate B2O3 Abrasive Wear 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Kulkarni KM, Anand V (1984) Metals handbook, 9th edn. ASM, Metals Park, OH 7:823Google Scholar
  2. 2.
    Kinzel AB, Crafts W (1937) The alloys of iron and chromium. Mcgraw-Hill, New York, NY, I:25Google Scholar
  3. 3.
    Kinzel AB, Franks R (1937) The alloys of iron and chromium. Mcgraw-Hill, New York, NY, II:173Google Scholar
  4. 4.
    Gundlach RB, Parks JL (1978) Wear 46:97CrossRefGoogle Scholar
  5. 5.
    Maratray F (1971) AFS Trans 79:121Google Scholar
  6. 6.
    Parks JL (1978) AFS Trans 86:93Google Scholar
  7. 7.
    Zum Gahr KH, Doane DV (1980) Metal Trans A 11A:613CrossRefGoogle Scholar
  8. 8.
    Zum Gahr KH, Eldis GT (1980) Wear 64:175CrossRefGoogle Scholar
  9. 9.
    Fulcher JK, Kosel TH, Fiore NF (1983) Wear 84:313CrossRefGoogle Scholar
  10. 10.
    Gundlach RB, Parks JL (1978) Wear 46:97CrossRefGoogle Scholar
  11. 11.
    Junyi S, Yuding J (1987) In: Ludema KC (ed) Wear of materials. ASME, New York, NY, pp 661–671Google Scholar
  12. 12.
    Tabrett CP, Sare IR, Ghomashci MR (1996) Int Mater Rev 41:59CrossRefGoogle Scholar
  13. 13.
    Ray S, Rohatgi PK (1972) Ind Patnet 30A:124Google Scholar
  14. 14.
    Badia M, Rohatgi PK (1969) Trans Am Foundrymen’s Soc 79:402Google Scholar
  15. 15.
    Mehrabian R, Flemings MC (1976) New trends in materials processing. ASM, Metals Park, 98 Google Scholar
  16. 16.
    Ghosh K, Ray S, Rohatgi PK (1984) Trans Jpn Inst Met 25:440CrossRefGoogle Scholar
  17. 17.
    Elanny F, Froyen L, Deruyttere A (1987) J Mater Sci 22:1. DOI: 10.1007/BF01160545CrossRefGoogle Scholar
  18. 18.
    Mortnesen A, Cornie JA, Flemings MC (1988) J Metals 40:12Google Scholar
  19. 19.
    Mortnesen A, Cornie JA (1987) Met Trans 18A:1160CrossRefGoogle Scholar
  20. 20.
    Mcdanels L (1985) Metal Trans 16A:1105CrossRefGoogle Scholar
  21. 21.
    Hosking M, Pportillo FF, Wunderlin R, Mehrabian R (1982) J Mater Sci 17:477. DOI: 10.1007/BF00591483CrossRefGoogle Scholar
  22. 22.
    Reidel R (2000) Handbook of ceramic hard materials. Willey-vch, Verlag GmbHD-69469 Weinheim, Germany, p 648Google Scholar
  23. 23.
    Laird G, Gundlach R, Rohrig K (2000) Abrasion-resistant cast iron handbook. American Foundry Society, Illinois, p 72Google Scholar
  24. 24.
    Nishiyama K, Mitra I, Momozawa N, Watanable T, Abe M, Telle RJ (1997) Jpn Res Inst Mater Technol 15:292Google Scholar
  25. 25.
    Telle R, Petzow G (1988) Mater Sci Eng A105/106:97CrossRefGoogle Scholar
  26. 26.
    Sanchez JM, Azcona I, Castro F (2000) Bol Soc Esp Ceram Vidr 39(3):251CrossRefGoogle Scholar
  27. 27.
    Vergara V, Lopez M, Benavente R, Camurri C, Cartes B (1999) In: Proceedings of copper 99-international conference, 1:303Google Scholar
  28. 28.
    Tjong SC, Wang GS, Mai YW (2003) Mater Sci Eng A 358:99CrossRefGoogle Scholar
  29. 29.
    Rack HJ, Kumar P, Vedula K, Ritter A (eds) (1988) In: Processing of properties of powder metallurgy composites. The Metallurgical Society, PA, p 155Google Scholar
  30. 30.
    Yilmaz O (2001) Mater Sci Technol 17:1285CrossRefGoogle Scholar
  31. 31.
    Ma ZY, Bi J, Lu YX, Shen HW, Gao YX (1993) Compost Interface 1:287Google Scholar
  32. 32.
    Raganath S, Vijayakumar M, Subrahmayam J (1992) Mater Sci Eng A 149:253CrossRefGoogle Scholar
  33. 33.
    Powel GLF, Laird G II (1992) J Mater Sci 27:29. DOI: 10.1007/BF00553833CrossRefGoogle Scholar
  34. 34.
    Riedel R (2000) Handbook of ceramic hard materials. Wiley-vch Verlag Gmbh, WeinheimCrossRefGoogle Scholar
  35. 35.
    Zum Gahr KH, Eldis GT (1980) Wear 64:175CrossRefGoogle Scholar
  36. 36.
    Kinzel AB, Franks R (1937) The alloys of iron and chromium. Mcgraw-Hill, New York, NY, II:173Google Scholar
  37. 37.
    Gundlach RB, Parks JL (1978) Wear 46:97CrossRefGoogle Scholar
  38. 38.
    Zum Gahr KH (1979) Met Prog 116:46Google Scholar
  39. 39.
    Powel GLF, Carlson RA, Randle V (1994) J Mater Sci 29:4889. DOI: 10.1007/BF00356539CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Department of Metallurgy, Faculty of Technical EducationUniversity of FiratElazigTurkey

Personalised recommendations