Journal of Materials Science

, Volume 42, Issue 8, pp 2766–2774 | Cite as

Fracture behaviours of epoxy nanocomposites with nano-silica at low and elevated temperatures

  • Shiqiang Deng
  • Lin YeEmail author
  • Klaus Friedrich


An investigation was conducted to characterize fracture behaviours of nano-silica modified epoxies at low and elevated temperatures. A nano-silica dispersed epoxy (Nanopox XP 22/0516, Hanse-Chemie, Germany) with 40 wt% silica nano-particles was used as modifier to toughen an epoxy resin, Araldite F (Bisphenol A based, Ciba-Geigy). Fracture toughness and other mechanical properties were measured using standard compact tension (CT), tensile and flexural specimens to elaborate the effects of nano-silica particles on fracture behaviours of epoxy nanocomposites at different temperatures, −50, 0, 23, 50 and 70 °C. Dynamic mechanical analysis (DMA) was utilized to define the glass transition temperature (Tg) upon the addition of different amounts of nano-silica particles. Fracture toughness of the nano-silica modified epoxies was clearly increased at 23 °C and 50 °C, but the role of nano-silica particles in enhancing the fracture toughness became less pronounced at 0 °C and −50 °C and disappeared at 70 °C.


Epoxy Fracture Toughness Dynamic Mechanical Analysis Crack Opening Displacement Compact Tension 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors thank C. Liu and H. Yang for their help in specimen preparation and conducting experiments. L Ye thanks the Alexander von Humboldt Foundation for the Friedrich Wilhelm Bessel Award for his research stay in Germany in 2005.


  1. 1.
    Garg AC, Mai YW (1988) Compos Sci Technol 31:179CrossRefGoogle Scholar
  2. 2.
    Bascom WD, Cottington RL, Jones RL, Peyser P (1975) J Appl Polym Sci 19:2545CrossRefGoogle Scholar
  3. 3.
    Hodgkin JH, Simon GP, Varley RJ (1998) Polym Adv Technol 9:3CrossRefGoogle Scholar
  4. 4.
    Kinloch AJ, Taylor AC (2003) J Mater Sci Lett 22:1439CrossRefGoogle Scholar
  5. 5.
    Moloney AC, Kausch HH, Stieger HR (1983) J Mater Sci 18:208CrossRefGoogle Scholar
  6. 6.
    Kinloch AJ, Lee JH, Taylor AC, Sprenger S, Eger C, Egan D (2003) J Adhesion 79:867CrossRefGoogle Scholar
  7. 7.
    Liu Y-L, Lin Y-L, Chen CP, Jeng RJ (2003) J. Appl. Polym. Sci. 90:4047CrossRefGoogle Scholar
  8. 8.
    Kinloch AJ, Mohammed RD, Taylor AC, Eger C, Sprenger S, Egan D (2005) J Mater Sci 40:5083CrossRefGoogle Scholar
  9. 9.
    Huang CJ, Fu SY, Zhang YH, Lauke B, Li LF, Ye L (2005) Cryogenics 45:450CrossRefGoogle Scholar
  10. 10.
    Xiao K, Ye L, Kwok YS (1998) J Mater Sci 33:2831CrossRefGoogle Scholar
  11. 11.
    Abdelkader AF, White JR (2005) J Mater Sci 40:1843CrossRefGoogle Scholar
  12. 12.
    Bicerano J, Seits JT (1996) In: Arends CB (ed) Polymer toughneing, Marcel Dekker, Inc, New York, p. 41Google Scholar
  13. 13.
    Faber KT, Evans AG (1983) Acta Metall 31:565CrossRefGoogle Scholar
  14. 14.
    Garg AC, Mai YW (1988) Compos Sci Technol 31:225CrossRefGoogle Scholar
  15. 15.
    Kinloch AJ, Maxwell D, Young RJ (1985) J Mater Sci 20:4169CrossRefGoogle Scholar
  16. 16.
    Kinloch AJ, Maxwell D, Young RJ (1985) J Mater Sci Lett 4:1276CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Centre for Advanced Materials Technology, School of Aerospace, Mechanical and Mechatronic EngineeringThe University of SydneySydneyAustralia
  2. 2.Institute for Composite MaterialsUniversity of KaiserslauternKaiserslauternGermany

Personalised recommendations