Advertisement

Journal of Materials Science

, Volume 42, Issue 8, pp 2582–2585 | Cite as

High pressure Raman spectroscopic study of structural phase transition in samarium oxide

  • Teruhisa Hongo
  • Ken-ichi Kondo
  • Kazutaka G. NakamuraEmail author
  • Toshiyuki Atou
Article

Abstract

High pressure Raman spectroscopic study of Sm2O3 poly crystal was performed up to 21.0 GPa and room temperature using a diamond anvil cell. Pressure induced phase transition was observed at 2.6 GPa in the pressure increasing process. This phase transition corresponds to the monoclinic B type phase → the hexagonal A type transformation. The A type phase was stable up to 21.0 GPa. In the pressure release process, the A type phase was stable above 1.8 GPa, and was completely reverted to the B type phase at 1.1 GPa. The phase transition was confirmed to be reversible with a hysteresis of approximately 1.0 GPa.

Keywords

Samarium Gd2O3 Diamond Anvil Cell Phase Transition Pressure Raman Spectroscopic Study 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The authors thank S. Oguchi for his assistance in experiments.

References

  1. 1.
    Goldschmidt VM, Ulrich F, Barth T (1925) Mat Natur K1:5Google Scholar
  2. 2.
    Warshaw I, Roy R (1961) J Phys Chem 65:2048CrossRefGoogle Scholar
  3. 3.
    Husson E, Proust C, Gillet P, Itie JP (1999) Mat Res Bull 34:2085CrossRefGoogle Scholar
  4. 4.
    Koehler WC, Wollan EO (1953) Acta Cryst 6:741CrossRefGoogle Scholar
  5. 5.
    German VN, Podurets AM, Tarasova LA (1982) Neorg Mater 18:1736Google Scholar
  6. 6.
    Salem MB, Dorbez R, Yangui B, Boulesteix C (1984) Phil Mag 50:621CrossRefGoogle Scholar
  7. 7.
    Salem MB, Yangui B, Boulesteix C (1987) J Physique 48:1147CrossRefGoogle Scholar
  8. 8.
    Atou T, Kusaba K, Fukuoka K, Kikuchi M, Syono Y (1990) J Solid State Chem 89:378CrossRefGoogle Scholar
  9. 9.
    Hoekstra HR (1966) Inorg Chem 5:754CrossRefGoogle Scholar
  10. 10.
    Hoekstra HR, Gingerich KA (1964) Science 146:1163CrossRefGoogle Scholar
  11. 11.
    Reid AF, Ringwood AE (1969) J Geophys Res 74:3238CrossRefGoogle Scholar
  12. 12.
    Atou T, Kusaba K, Tsuchida Y, Utsumi W, Yagi T, Syono Y (1989) Mat Res Bull 24:1171CrossRefGoogle Scholar
  13. 13.
    Atou T, Kusaba K, Syono Y, Kikegawa T, Iwasaki H (1992) In: Syono Y, Manghnani MH (eds) High-pressure research: application to earth and planetary science. Terra Pub., Tokyo, pp 469–475Google Scholar
  14. 14.
    Hyde BG, Andersson S (1989) Inorganic crystal structures. Wiley, New York, pp 245–247Google Scholar
  15. 15.
    Tsuchida Y, Yagi T (1989) Nature 340:217CrossRefGoogle Scholar
  16. 16.
    Piermarini GJ, Block S, Barnett JD, Forman RA (1975) J Appl Phys 46:2774CrossRefGoogle Scholar
  17. 17.
    Gouteron J, Michel D, Lejus AM, Zarembowitch J (1981) J Solid State Chem 38:288CrossRefGoogle Scholar
  18. 18.
    Stump G, Haire RG, Burns JB, Peterson JR (1994) AIP Conf Proc 309:359CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  • Teruhisa Hongo
    • 1
  • Ken-ichi Kondo
    • 1
  • Kazutaka G. Nakamura
    • 1
    Email author
  • Toshiyuki Atou
    • 2
  1. 1.Materials and Structures LaboratoryTokyo Institute of Technology R3-10YokohamaJapan
  2. 2.Institute for Materials ResearchTohoku UniversitySendaiJapan

Personalised recommendations