Advertisement

Journal of Materials Science

, Volume 42, Issue 16, pp 6803–6808 | Cite as

Properties of barium-strontium titanate PTCR ceramics sintered on different powder beds

  • Pornsuda BomlaiEmail author
  • Steven J. Milne
Article

Abstract

Barium-strontium titanate (BST) ceramics, co-doped with Sb and Mn oxides, were sintered on different powder beds: Sb-doped BST; Al2O3; or Sb,Mn-codoped BST powder. Phase formation, microstructure and the electrical properties of the samples were analysed. The PTCR behavior depended significantly on the type of powder bed used. The BST ceramic pellet sintered on the Sb-BST powder displayed the largest PTCR effect, with a ρmaxRT ratio of ∼106. This was an order of magnitude greater than for samples sintered on the other two powders. Complex impedance analysis confirmed that this was due to a large increase in grain boundary resistance at 250 °C.

Keywords

MnO2 Sb2O3 Barium Strontium Titanate Boundary Resistance Room Temperature Resistivity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The authors would like to express their sincere thanks to P. Vogel and Electroceramics Laboratory in Chiang Mai University for impedance measurement.

References

  1. 1.
    He Z, Ma J, Qu Y, Feng X (2002) J Eur Ceram Soc 22:2143CrossRefGoogle Scholar
  2. 2.
    Goodman G (1963) J Am Ceram Soc 46:48CrossRefGoogle Scholar
  3. 3.
    Urek S, Drofenik MM (1999) J Eur Ceram Soc 19:913CrossRefGoogle Scholar
  4. 4.
    Zhao J, Li L, Gui Z (2001) Sens Actuators A 95:46CrossRefGoogle Scholar
  5. 5.
    Hewang W (1964) J Am Ceram Soc 47:484CrossRefGoogle Scholar
  6. 6.
    Jonker GH (1964) Solid State Electron 8:895CrossRefGoogle Scholar
  7. 7.
    Lin T-F, Hu C-T, Lin I-N (1990) J Am Ceram Soc 73:531CrossRefGoogle Scholar
  8. 8.
    Ihrig H (1981) J Am Ceram Soc 64:617CrossRefGoogle Scholar
  9. 9.
    Basu RN, Maiti HS (1987) Mater Lett 5:99CrossRefGoogle Scholar
  10. 10.
    Qi J, Chen W, Wu Y, Li L (1998) J Am Ceram Soc 81:437CrossRefGoogle Scholar
  11. 11.
    Chatterjee S, Maiti HS (2001) Mater Chem Phys 67:294CrossRefGoogle Scholar
  12. 12.
    Qi J, Gui Z, Wang Y, Wu Y, Li L (2002) Mater Sci Eng B 95:283CrossRefGoogle Scholar
  13. 13.
    Qi J, Gui Z, Zhu Q, Wang Y, Wu Y, Li L (2002) Sens Actuators A 100:244CrossRefGoogle Scholar
  14. 14.
    Qi J, Gui Z, Wu Y, Li L (2001) Sens Actuators A 93:84CrossRefGoogle Scholar
  15. 15.
    Qi J, Qing Z, Wang Y, Wu Y, Li L (2001) Solid State Commun 120:505CrossRefGoogle Scholar
  16. 16.
    Holland TJB, Redfern SAT (1997) Mineral Magazine 61:65CrossRefGoogle Scholar
  17. 17.
    Joint Committee for Powder Diffraction standard (JCPDS), card No. 44-0093Google Scholar
  18. 18.
    Bomlai P, Sirikulrat N, Brown A, Milne SJ (2005) J Eur Ceram Soc 25:1905CrossRefGoogle Scholar
  19. 19.
    Bomlai P, Sirikulrat N, Brown A, Conliffe E, Milne SJ (2006) J Mater Sci 42:2175CrossRefGoogle Scholar
  20. 20.
    Sinclair DC, West AR (1989) J Appl Phys 3850Google Scholar
  21. 21.
    Bomlai P, Sirikulrat N, Tunkasiri T (2005) Mater Lett 59:118CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Materials Science Program, Faculty of SciencePrince of Songkla UniversitySongkhlaThailand
  2. 2.Institute for Materials ResearchUniversity of LeedsLeedsUK

Personalised recommendations