Journal of Materials Science

, Volume 42, Issue 16, pp 6819–6823 | Cite as

Combustion synthesis and luminescence characteristic of Eu3+-doped barium stannate nanocrystals

  • Shumei Wang
  • Zhongsen Yang
  • Guangjun Zhou
  • Mengkai LuEmail author
  • Yuanyuan Zhou
  • Haiping Zhang


It is the first time that the undoped and Eu3+-doped barium stannate nanocrystals with definite morphologies are synthesized using a new combustion method. This method offers several attractive advantages such as: currency for any reagents, simple process, surprisingly short calcination time, availability of mass production and good repeatability with low cost. The characteristics of the as-synthesized nanocrystals are described with X-ray diffraction, transmission electron micrograph and luminescence spectrum.


Chromite Manganite Combustion Synthesis Stannic Chloride Stannate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work is supported by the funds of excellent state key laboratory (No. 50323006) and the funds awarded by Shandong Province (No. Y2003F08).


  1. 1.
    Hines RI, Allan NL (1996) Philos Mag B 73:33CrossRefGoogle Scholar
  2. 2.
    Ostrick B (1997) J Am Ceram Soc 80:2153CrossRefGoogle Scholar
  3. 3.
    Matsushima S, Teraoka Y, Miura N, Yamazoe N (1988) Jpn J Appl Phys 27:1798CrossRefGoogle Scholar
  4. 4.
    Ratna Phani A, Manorama S, Rao VJ (1995) Appl Phys Lett 66:2619CrossRefGoogle Scholar
  5. 5.
    Lumpe U, Gerblinger J, Meixner H (1995) Sens Actuators B 97:24Google Scholar
  6. 6.
    Reddy CVG, Manorama SV, Rao VJ, Lobo A, Kulkarni SK (1999) Thin Solid Films 348:261CrossRefGoogle Scholar
  7. 7.
    Reddy CVG, Manorama SV, Rao VJ (2001) J Mater Sci 12:137Google Scholar
  8. 8.
    Bao M, Li WD, Zhu P (1993) J Mater Sci 28:6617CrossRefGoogle Scholar
  9. 9.
    Leoni M, Buscaglia V, Nanni P, Viviani M (1998) Ceram Trans 88:159Google Scholar
  10. 10.
    Azad A, Hon NC (1998) J Alloys Comp 270:95CrossRefGoogle Scholar
  11. 11.
    Azad AM, Shyna LLW, Pang TY, Nee CH (2000) Ceram Int 26:685CrossRefGoogle Scholar
  12. 12.
    Upadhyay S, Parkash O, Kumar D (1997) J Mater Sci Lett 16:1330CrossRefGoogle Scholar
  13. 13.
    Smith MG, Goodenouth JB, Manthiram A, Taylor RD, Peng W, Kimbal CW (1992) J Solid State Chem 98:181CrossRefGoogle Scholar
  14. 14.
    Licheron M, Jouan G, Husson E (1997) J Eur Ceram Soc 17:1453CrossRefGoogle Scholar
  15. 15.
    Udawatte CP, Kakihana M, Yoshimura M (1998) Solid State Ionics 108:23CrossRefGoogle Scholar
  16. 16.
    Kutty TRN, Vivekanadan R (1987) Mater Res Bull 22:1457CrossRefGoogle Scholar
  17. 17.
    Tao S, Gao F, Liu X, Sorensen OT (2000) Sens Actuators B 71:223CrossRefGoogle Scholar
  18. 18.
    Reddy CVG, Manorama SV, Rao VJ, Lobo A, Kulkarni SK (1999) Thin Solid Films 348:261CrossRefGoogle Scholar
  19. 19.
    Cerda J, Arbiol J, Diaz R, Dezaneau G, Morante JR (2002) Mater Lett 56:131CrossRefGoogle Scholar
  20. 20.
    Li F, Hu K, Li J, Zhang D, Chen G (2002) J Nucl Mater 300:82CrossRefGoogle Scholar
  21. 21.
    Mimani T (2001) J Alloy Compd 315:123CrossRefGoogle Scholar
  22. 22.
    Kwon SW, Park SB, Seo G, Hwang ST (1998) J Nucl Mater 257:172CrossRefGoogle Scholar
  23. 23.
    Fumo DA, Morelli MR, Segadaes AM (1996) Mater Res Bull 31:1243CrossRefGoogle Scholar
  24. 24.
    Mukasyan AS, Costello C, Sherlock KP, Lafarga D, Varma A (2001) Sep Purif Technol 25:117CrossRefGoogle Scholar
  25. 25.
    Yang YJ, Wen TL, Tu H, Wang DQ, Yang J (2000) Solid State Ionics 135:475CrossRefGoogle Scholar
  26. 26.
    Kingsley JJ, Pederson LR (1993) Mater Lett 18:89CrossRefGoogle Scholar
  27. 27.
    Biamino S, Badini C (2004) J Eur Ceram Soc 24:3021CrossRefGoogle Scholar
  28. 28.
    Yue Z, Zhou J, Li L, Zhang H, Gui Z (2000) J Magn Magn Mater 208:55CrossRefGoogle Scholar
  29. 29.
    Qi X, Zhou J, Yue Z, Gui Z, Li L (2002) Mater Chem Phys 78:25CrossRefGoogle Scholar
  30. 30.
    Caldes MT, Goglio G, Marhic C, Joubert O, Lancin M, Brohan L (2001) Int J Inorg Mater 3:1169CrossRefGoogle Scholar
  31. 31.
    Segadases AM, Morelli MR, Kiminami RGA (1998) J Eur Ceram Soc 18:771CrossRefGoogle Scholar
  32. 32.
    Jung CH, Park JY, Oh SJ, Park HK, Kim YS, Kim DK, Kim JH (1998) J Nucl Mater 253:203CrossRefGoogle Scholar
  33. 33.
    Wang S, Lu M, Zhou G, Zhou Y, Zhang A, Yang Z (in press) J Alloy CompdGoogle Scholar
  34. 34.
    Li YQ, Delsing ACA, de With G, Hintzen HT (2005) Chem Mater 17:3242CrossRefGoogle Scholar
  35. 35.
    Xie RJ, Hirosaki N, Mitomo M, Yamamoto Y, Suehiro T, Sakuma K (2004) J Phys Chem B 108:12027CrossRefGoogle Scholar
  36. 36.
    Clabau F, Rocquefelte X, Jobic S, Deniard P, Whangbo MH, Grcia A, Mercier TL (2005) Chem Mater 17:3904CrossRefGoogle Scholar
  37. 37.
    Su H, Jia Z, Shi C (2001) Chem Mater 13:3969CrossRefGoogle Scholar
  38. 38.
    Gerhardt R (1994) Proc Phys Soc Lond 58:1491Google Scholar
  39. 39.
    Vanderziel JP, Kopf L, Vanuitert LG (1972) Phys Rev B 6:615CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Shumei Wang
    • 1
  • Zhongsen Yang
    • 1
  • Guangjun Zhou
    • 1
  • Mengkai Lu
    • 1
    Email author
  • Yuanyuan Zhou
    • 1
  • Haiping Zhang
    • 1
  1. 1.State Key Laboratory of Crystal MaterialsShandong UniversityJinanChina

Personalised recommendations