Advertisement

Journal of Materials Science

, Volume 42, Issue 10, pp 3645–3650 | Cite as

Prediction of enthalpy of formation and Gibbs energy change in pseudo-binary (Ti–Zr)(Fe–Cr)2 and pseudo-ternary (Ti–Zr)(Fe–Cr)2-H system using extended Miedema model

  • S. Bera
  • S. Mazumdar
  • M. Ramgopal
  • S. Bhattacharyya
  • I. Manna
Article

Abstract

The thermodynamic model proposed by Miedema is capable of predicting the enthalpy of formation (ΔH) and relative stability of phases in binary but not in ternary or multi-component systems. While developing nanocrystalline binary/ternary metal hydrides for compressor-driven reversible heating–cooling applications, it is necessary to identify appropriate alloy compositions with suitable hydrogen storage capacity and reversible hydrogen absorption–desorption capability. Accordingly, a suitable modification of the Miedema model is proposed in the present study for calculating ΔH of AB2 type of pseudo-binary (Ti–Zr)(Fe–Cr)2 and pseudo-ternary (Ti–Zr)(Fe–Cr)2-H alloys. Subsequently, Gibbs energy (ΔG) of the possible phases is estimated to predict relative phase stability/equilibrium in a given system. It is shown that grain size or interfacial energy contribution exerts a significant influence on ΔG and relative stability of the phases beyond a critical value/limit. Finally, the predicted phase equilibrium from this model-based calculation is validated by suitable comparison with relevant experimental data reported in the literature.

Keywords

Hydride Metal Hydride Intermetallic Alloy Gibbs Energy Change Hydrogen Storage Capacity 

Notes

Acknowledgements

Partial financial support from the Ministry of Non-conventional Energy Sources, New Delhi (Grant no.: 103/08/2001-NT) is gratefully acknowledged. Useful technical discussion with Prof. E. Rabkin and Prof. H. J. Fecht is deeply appreciated.

References

  1. 1.
    Shaltiel D, Jacob I, Davidov D (1977) J Less-Common Met 53:117CrossRefGoogle Scholar
  2. 2.
    Shaltiel D (1978) J Less-Common Met 62:407CrossRefGoogle Scholar
  3. 3.
    de Boer FR, Boom R, Mattens WCM, Miedema AR, Niessen AK (1989) In: de Boer FR, Pettifor DG (eds) Cohesion in Metals, 2nd edn. North Holland Physics Publishing, AmsterdamGoogle Scholar
  4. 4.
    Bouten PCP, Meidema AR (1980) J Less-Common Met 71:147CrossRefGoogle Scholar
  5. 5.
    van Mal HH, Buschow KHJ, Miedema AR (1974) J Less-Common Met 35:65CrossRefGoogle Scholar
  6. 6.
    Miedema AR, Buschow KHJ, van Mal HH (1976) J Less-Common Met 49:463CrossRefGoogle Scholar
  7. 7.
    Miedema AR, Buschow KHJ, van Mal HH (1977) In: Proc. symp. on electrode materials and processes for energy conversion and storage, Philadelphia, PA, pp 77–6. The Electrochemical Society, Princeton, p 456 Google Scholar
  8. 8.
    Herbst JF (2002) J Alloys Compd 337:99CrossRefGoogle Scholar
  9. 9.
    Herbst JF (2004) J Alloys Compd 368:221CrossRefGoogle Scholar
  10. 10.
    Fang S, Zhou Z, Zhang J, Yao M, Feng F, Northwood DO (2000) Int J Hydrogen Energy 25:143CrossRefGoogle Scholar
  11. 11.
    Fang S, Zhou Z, Zhang J, Yao M, Feng F, Northwood DO (1999) J Alloys Compd 293–295 10CrossRefGoogle Scholar
  12. 12.
    http://hydpark.ca.sandia.gov, as on 20 July 2005Google Scholar
  13. 13.
    Yu GY, Pourarian F, Wallace WE (1985) J Less-Common Met 106:79CrossRefGoogle Scholar
  14. 14.
    Lee JY, Park JM (1990) In: Veziroglu TN, Takahashi PK (eds) Hydrogen energy progress VIII. Pergamon Press, New York, 2, pp 985–993Google Scholar
  15. 15.
    Wallace WE, Pourarian F (1985) U.S. Patent 4,556,551, Dec. 3, 1985Google Scholar
  16. 16.
    Park J-G, Jang K-J, Lee PS, Lee J-Y (2001) Int J Hydrogen Energy 26:701CrossRefGoogle Scholar
  17. 17.
    Murr LE (1975) In: Interfacial phenomena in metals and alloys. Addison-Wesley Publishing Company Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • S. Bera
    • 1
  • S. Mazumdar
    • 2
  • M. Ramgopal
    • 2
  • S. Bhattacharyya
    • 2
  • I. Manna
    • 1
  1. 1.Department of Metallurgical and Materials EngineeringIndian Institute of TechnologyKharagpurIndia
  2. 2.Department of Mechanical EngineeringIndian Institute of TechnologyKharagpurIndia

Personalised recommendations