Journal of Materials Science

, Volume 42, Issue 8, pp 2684–2689 | Cite as

Preparation and characterization of l-cystine and l-cysteine intercalated layered double hydroxides

  • Min Wei
  • Jian Guo
  • Zhiyu Shi
  • Qi Yuan
  • Min Pu
  • Guoying Rao
  • Xue DuanEmail author


l-cystine and l-cysteine have been intercalated into magnesium–aluminum layered double hydroxide by the methods of coprecipitation and ion-exchange. The structure and composition of the intercalated materials have been characterized by X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy and elemental analysis. For l-cysteine intercalated composites, two kinds of well-crystallized materials with different basal spacing were obtained, as a result of the different charge on an ion and orientation of the gallery anions. The schematic models of the intercalation structures were proposed. In addition, the thermal decomposition of l-cystine and l-cysteine intercalated LDHs has been investigated by means of thermogravimetry and differential thermal analysis (TG-DTA).


Layered Double Hydroxide Basal Spacing Weight Loss Step Host Layer Monovalent Anion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This project was supported by the National Natural Science Foundation Major International Joint Research Program (Project No.: 20620130108), National Natural Science Foundation of China (Grant No.: 20601001), the Program for New Century Excellent Talents in University (Project No.: NCET-05-121) and the 111 Project (Project No.: B07004).


  1. 1.
    Meyn M, Beneke K, Lagaly G (1990) Inorg Chem 29:5201CrossRefGoogle Scholar
  2. 2.
    Williams GR, Norquist AJ, O’hare D (2004) Chem Mater 16:975CrossRefGoogle Scholar
  3. 3.
    Khan AI, Lei L, Norquist AJ, O’hare D (2001) Chem Commun 2342Google Scholar
  4. 4.
    Moujahid EM, Dubois M, Besse JP, Leroux F (2005) Chem Mater 17:373CrossRefGoogle Scholar
  5. 5.
    Zhao HT, Vance GF (1998) Clays Clay Miner 46:712CrossRefGoogle Scholar
  6. 6.
    Ding WP, Gu G, Zhong W, Zang WC, Du YW (1996) Chem Phys Lett 262:259CrossRefGoogle Scholar
  7. 7.
    Newman SP, Jones W (1998) New J Chem 22:105CrossRefGoogle Scholar
  8. 8.
    Constantino VRL, Pinnavaia TJ (1994) Catal Lett 23:361CrossRefGoogle Scholar
  9. 9.
    Corma A, Fornes V, Rey F, Cervilla A, Llopis E, Ribera A (1995) J Catal 152:237CrossRefGoogle Scholar
  10. 10.
    Ogawa M, Kuroda K (1995) Chem Rev 95:399CrossRefGoogle Scholar
  11. 11.
    Tagaya H, Sato S, Kuwahara T, Kadokawa J, Masa K, Chiba K (1994) J Mater Chem 4:1907CrossRefGoogle Scholar
  12. 12.
    Sels B, Vos DD, Buntinx M, Pireard F, Mesmaeker AK, Jacobs P (1999) Nature 400:855CrossRefGoogle Scholar
  13. 13.
    Ukrainczyk L, Chibwe M, Pinnavaia TJ, Boyd SA (1995) Environ Sci Technol 29:439CrossRefGoogle Scholar
  14. 14.
    Fogg AM, Green VM, Harvey HG, O’hare D (1999) Adv Mater 11:1466CrossRefGoogle Scholar
  15. 15.
    Fogg AM, Dunn JS, Shyu SG, Cary DR, O’hare D (1998) Chem Mater 10:351CrossRefGoogle Scholar
  16. 16.
    Fudala A, Palinko I, Hrivnak B, Kiricsi I (1999) J Therm Anal Calorim 56:317CrossRefGoogle Scholar
  17. 17.
    Aisawa S, Takahashi S, Ogasawara W, Umersu Y, Narata E (2001) J Solid State Chem 162:52CrossRefGoogle Scholar
  18. 18.
    Choy J, Kwak S, Park J, Jeong Y, Portier J (1999) J Am Chem Soc 121:1399CrossRefGoogle Scholar
  19. 19.
    Kwak SY, Jeong YJ, Park JS, Choy JH (2002) Solid State Ionics 151:229CrossRefGoogle Scholar
  20. 20.
    Hwang SH, Han YS, Choy JH (2001) Bull Korean Chem Soc 22:1019Google Scholar
  21. 21.
    Ambrogi V, Fardella G, Grandolini G, Perioli L (2001) Int J Pharm 220:23CrossRefGoogle Scholar
  22. 22.
    Whilton NT, Vickers PJ, Mann S (1997) J Mater Chem 7:1623CrossRefGoogle Scholar
  23. 23.
    Fudala A, Palinko I, Kiricsi I (1999) Inorg Chem 38:4653CrossRefGoogle Scholar
  24. 24.
    Aisawa S, Takahashi S, Ogasawara W, Umetsu Y, Narita E (2001) J Solid State Chem 162:52CrossRefGoogle Scholar
  25. 25.
    Shinitzky M, Nudelman F, Barda Y, Haimovitz R, Chen E, Deamer DW (2002) Origins Life Evol B 32:285CrossRefGoogle Scholar
  26. 26.
    Vaysse C, Guerlou-Demourgues L, Delmas C (2002) Inorg Chem 41:6905CrossRefGoogle Scholar
  27. 27.
    Cavani F, Trifiro F, Vaccari A (1991) Catal Today 11:173CrossRefGoogle Scholar
  28. 28.
    Nakamoto K (1997) In: Infrared and Raman spectra of inorganic and coordination compounds. Wiley & Sons, New YorkGoogle Scholar
  29. 29.
    Prevot V, Forano C, Besse JP (1998) Inorg Chem 37:4293CrossRefGoogle Scholar
  30. 30.
    Wang XC (2001) In: Biology chemistry. Tsinghua University Press, BeijingGoogle Scholar
  31. 31.
    Oriakhi CO, Farr IV, Lerner MM (1996) J Mater Chem 6:103CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  • Min Wei
    • 1
  • Jian Guo
    • 1
  • Zhiyu Shi
    • 1
  • Qi Yuan
    • 1
  • Min Pu
    • 1
  • Guoying Rao
    • 1
  • Xue Duan
    • 1
    Email author
  1. 1.State Key Laboratory of Chemical Resource EngineeringBeijing University of Chemical TechnologyBeijing P. R. China

Personalised recommendations