Journal of Materials Science

, Volume 42, Issue 8, pp 2830–2836 | Cite as

Kinetics of the γ → α-alumina phase transformation by quantitative X-ray diffraction

  • Maria Iaponeide Fernandes Macêdo
  • Celso Aparecido Bertran
  • Carla Cristiane Osawa


This work reports the kinetics of α-alumina transformation from γ-alumina, prepared by the sol-gel method from a solution of saturated aluminum nitrate and urea. The γ-alumina phase transformed directly into α-alumina at 750, 800, 850 and 900 oC, without any intermediate phases, such as θ- or δ-alumina. The kinetics of γ → α-alumina phase transformation was monitored by determination of α-alumina fraction formed through quantitative X-ray diffraction (XRD), with calcium fluoride added as an internal standard. The crystallised fractions of α-alumina increased sigmoidally with time, indicating that the γ → α-alumina phase transformation had a nucleation and growth mechanism. The kinetic parameters for this transformation were determined through the Kolmogorov–Johnson–Mehl–Avrami (KJMA) model and the Arrhenius’ law. The apparent activation energy, the Avrami exponent, n, and the t0.75/t0.25 ratio determined for the transformation were, respectively, of (201 ± 4) kJ mol−1 (2.1 ± 0.2) and (2.1 ± 0.1). The apparent activation energy is lower than the values previously reported for the γ → α-alumina transformation, as a consequence of the high surface area (425 m2/g) of γ-alumina. The t0.75/t0.25 ratio of (2.1 ± 0.1) suggested that the α-alumina growth was plate-like, which was confirmed by the SEM micrograph of α-alumina.


Apparent Activation Energy Gibbsite Aluminum Nitrate Calcium Fluoride Avrami Exponent 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors would like to thank CNPq and CAPES for financial support.


  1. 1.
    Gitzen HW (1970) Alumina as a ceramic material, Am Ceram Soc Columbus, OH pp 84Google Scholar
  2. 2.
    Temuujin J, Jadambaa T, Mackenzie KJD, Angerer P, Porte PF, Riley F (2000) Bull Mater Sci 23:301CrossRefGoogle Scholar
  3. 3.
    Sarikaya Y, Ada K, Alemdaroglu T, Bozdogan I (2002) J Eur Ceram Soc 22:1905CrossRefGoogle Scholar
  4. 4.
    Llusar M, Pidol L, Roux C, Pozzo JL, Sanchez C (2002) Chem Mater 14:5124CrossRefGoogle Scholar
  5. 5.
    Urretavizcaya G, Cavalieri AL, Lopez JMP, Sobrados I, Sanz J (1998) J Mater Synth Process 6:1CrossRefGoogle Scholar
  6. 6.
    Sharma PK, Varadan VV, Varadan VK (2003) J Eur Ceram Soc 23:659CrossRefGoogle Scholar
  7. 7.
    Nordahl CS, Messing GL (1998) Thermochim Acta 318:187CrossRefGoogle Scholar
  8. 8.
    Wefers K, Misra C (1987) Oxides and hydroxides of aluminum, Alcoa Technical Paper No. 19 Rev., ALCOA LabsGoogle Scholar
  9. 9.
    Stumpf HC, Russell AS, Newsome JW, Tucker CM (1950) Ind Eng Chem 42:1398CrossRefGoogle Scholar
  10. 10.
    Lippens BC, Deboer JH (1964) Acta Crystallogr 17:1312CrossRefGoogle Scholar
  11. 11.
    Morrissey KJ, Czanderna KK, Carter CB (1984) J Am Ceram Soc 66:C-88CrossRefGoogle Scholar
  12. 12.
    Wilson SJ, McConnell JD (1980) J Solid State Chem 34:315CrossRefGoogle Scholar
  13. 13.
    Brinker CJ, Scherer GW (1990) Sol-gel science—the physics and chemistry of sol-gel processing. Academic Press, San DiegoGoogle Scholar
  14. 14.
    Saraswati V, Rao GVN, Rao GVR (1987) J Mater Sci 22:2529CrossRefGoogle Scholar
  15. 15.
    Assih T, Ayral A, Abenoza M, Phalippou J (1988) J Mater Sci 23:3326CrossRefGoogle Scholar
  16. 16.
    Dwivedi RK, Gowda G (1985) J Mater Sci Lett 4:331CrossRefGoogle Scholar
  17. 17.
    Pecharroman C, Sobrados I, Iglesias JE, González-Carreño T, Sanz J (1999) J Phys Chem B 103:6160CrossRefGoogle Scholar
  18. 18.
    Sohlberg K, Pennycook SJ, Pantelides ST (1999) J Am Ceram Soc 121:7493Google Scholar
  19. 19.
    Ozao R, Ochiai M, Yoshida H, Ichimura Y, Inada T (2001) J Therm Anal Calorim 64:923CrossRefGoogle Scholar
  20. 20.
    Shelleman RA, Messing GL, Kumagai M (1986) J Non-Cryst Sol 82:277CrossRefGoogle Scholar
  21. 21.
    Nishio T, Fujiki Y (1994) J Mater Sci 29:3408CrossRefGoogle Scholar
  22. 22.
    McArdle JL, Messing GL (1993) J Am Ceram Soc 76:214CrossRefGoogle Scholar
  23. 23.
    Korunderlieva S, Plachkova B (1993) Interceramics 42:140Google Scholar
  24. 24.
    Macêdo MIF, Osawa CC, Bertran CA (2004) J Sol-Gel Sci Technol 30:135CrossRefGoogle Scholar
  25. 25.
    Thim GP, Bertran CA, Barlette VE, Macêdo MIF, Oliveira MAS (2001) J Eur Ceram Soc 21:759CrossRefGoogle Scholar
  26. 26.
    Macêdo MIF (1999) Synthesis of alumina by the sol-gel process: kinetics and morphology, PhD thesis, Chemistry Institute, UNICAMP, CampinasGoogle Scholar
  27. 27.
    Mastikhin VM, Krivoruchko OP, Zolotouskii BP, Buyanou RA (1981) React Kinet Catal Lett 18:117CrossRefGoogle Scholar
  28. 28.
    Sanz J, Sobrados I, Cavalieri AL, Pena P, Aza S, Moya JS (1991) J Am Ceram Soc 74:2398CrossRefGoogle Scholar
  29. 29.
    Baraton MI, Quintard P (1982) J Mol Struct 79:337CrossRefGoogle Scholar
  30. 30.
    Busca G, Lorenzelli V, Ramis G, Willey RJ (1993) Langmuir 9:1492CrossRefGoogle Scholar
  31. 31.
    Kolmogorov AE (1937) Bull Acad Sci USSR Mater Sci 1:355Google Scholar
  32. 32.
    Johnson WA, Mehl RE (1939) Trans Am Inst Min Eng 135:416Google Scholar
  33. 33.
    Avrami M (1939) J Chem Phys 20:1103CrossRefGoogle Scholar
  34. 34.
    Avrami M (1940) J Chem Phys 8:212CrossRefGoogle Scholar
  35. 35.
    Avrami M (1941) J Chem Phys 9:177CrossRefGoogle Scholar
  36. 36.
    Put PJV (1998) The inorganic chemistry of materials: how to make things out of elements. Plenum Press, New YorkGoogle Scholar
  37. 37.
    Burtin O, Brunelle JP, Pijolat M, Soustelle M (1987) Appl Catal 34:239CrossRefGoogle Scholar
  38. 38.
    Jang SW, Lee HY, Shin KC, Lee SM (2001) J Ceram Process Res 2:67Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Maria Iaponeide Fernandes Macêdo
    • 1
  • Celso Aparecido Bertran
    • 2
  • Carla Cristiane Osawa
    • 2
  1. 1.Chemistry InstituteFederal University of Rio de Janeiro (UFRJ), Centro de Tecnologia, Bloco A, Cidade UniversitáriaRio de JaneiroBrazil
  2. 2.Chemistry InstituteState University of Campinas (UNICAMP)CampinasBrazil

Personalised recommendations