Journal of Materials Science

, Volume 42, Issue 8, pp 2662–2668 | Cite as

Microstructural study of carbonized wood after cell wall sectioning

  • Kengo IshimaruEmail author
  • Toshimitsu Hata
  • Paul Bronsveld
  • Yuji Imamura


Wooden blocks of Japanese cedar (Cryptomeria japonica) were carbonized at 700 and 1,800 °C. The microstructure was analyzed by transmission electron microscopy (TEM) and μ-Raman spectroscopy of the inner planes of wood cell walls. The predominant structure was of a turbostratic nature and no heterogeneity was observed originating from the original cell walls. TEM observations of samples carbonized at 1,800 °C showed ordered regions in the surface layer of cell walls. This result was supported by polarized μ-Raman analysis. It may be caused by the deposition of carbon compounds volatilized from the cell walls during pulse current heating.


Cell Wall Japanese Cedar Tangential Section Wood Cell Wall Carbonize Wood 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors are grateful to Dr. Junji Sugiyama, RISH, for the experimental support with TEM. We are also thankful to Shuichi Muraishi, Renishaw and Toyoko Imai, Zeon Corporation, for the experimental support with polarized micro Raman Analysis. This research was carried out with support from Grant-in-Aid for Scientific Research (14002121) from the Ministry of Education, Science, and Culture of Japan.


  1. 1.
    Lewin M, Goldstein I (1991) In: Wood structure and composition. Marcel Dekker, Inc., New York, p 149Google Scholar
  2. 2.
    Hata T, Vystavel T, Bronsveld P, DeHosson J, Kikuchi H, Nishimiya K, Imamura Y (2004) Carbon 42:961CrossRefGoogle Scholar
  3. 3.
    Hata T, Ishimaru K, Fujisawa M, Bronsveld P, Vystavel T, Hosson JD, Kikuchi H, Nishizawa T, Imamura Y (2005) Nanotubes Carbon Nanostruct 13:435CrossRefGoogle Scholar
  4. 4.
    Greil P, Lifka T, Kaindl A (1998) J Eur Cera Soc 18:1961CrossRefGoogle Scholar
  5. 5.
    Fujisawa M, Hata T, Bronsveld P, Castro V, Tanaka F, Kikuchi H, Furuno T, Imamura Y (2004) J Eur Ceram Soc 24:3575CrossRefGoogle Scholar
  6. 6.
    Castro V, Fujisawa M, Hata T, Bronsveld P, Vystavel T, Hosson JD, Kikuchi H, Imamura Y (2004) Key Eng Mat 264–268:2267CrossRefGoogle Scholar
  7. 7.
    Byrne CE, Nagle DC (1997) Carbon 35:267CrossRefGoogle Scholar
  8. 8.
    Paris O, Zollfrank C, Zickler GA (2005) Carbon 43:53CrossRefGoogle Scholar
  9. 9.
    Kercher AK, Nagle DC (2003) Carbon 41:15CrossRefGoogle Scholar
  10. 10.
    Otani S, Oya A (1971) Tanso 64:10 [in Japanese]CrossRefGoogle Scholar
  11. 11.
    Shiraishi M, Terriere G, Oberlin A (1978) J Mat Sci 13:702CrossRefGoogle Scholar
  12. 12.
    Oberlin A (1979) Carbon 17:7CrossRefGoogle Scholar
  13. 13.
    Huttepain H, Oberlin A (1990) Carbon 28:103CrossRefGoogle Scholar
  14. 14.
    Katagiri G, Ishida H, Ishitani A (1988) Carbon 26:565CrossRefGoogle Scholar
  15. 15.
    Cuesta A, Dhamelincourt P, Laureyns J, Martinez-Alonso A, Tascon JMD (1994) Carbon 32:1523CrossRefGoogle Scholar
  16. 16.
    Yamauchi S, Kurimoto Y (2003) J Wood Sci 49:235CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  • Kengo Ishimaru
    • 1
    • 2
    Email author
  • Toshimitsu Hata
    • 2
  • Paul Bronsveld
    • 3
  • Yuji Imamura
    • 2
  1. 1.Central Research LaboratoryDaiwa House Industry Co., LtdNaraJapan
  2. 2.Research Institute for Sustainable Humanosphere (RISH)Kyoto UniversityUjiJapan
  3. 3.Department of Applied PhysicsUniversity of Groningen GroningenThe Netherlands

Personalised recommendations