Advertisement

Journal of Materials Science

, Volume 42, Issue 10, pp 3651–3660 | Cite as

The effect of Ti4+ ions and gamma radiation on the structure and electrical properties of Mg ferrite

  • M. A. Ahmed
  • E. AteiaEmail author
  • F. M. Salem
Article

Abstract

Ferrite samples of the general formula Mg1+xTixEryFe2−2xyO4; 0.1 ≤ x ≤ 0.9, y = 0.025 were prepared using the standard ceramic method. The final sintering temperature was 1,200 °C with heating rate 4 °C/min during 100 h. X-ray diffraction analysis was carried out to assure the formation of the spinel structure. The effect of Ti4+ ion concentration on the structural and the electrical properties of the investigated samples is studied. It change the iron ion concentration from 2 to 2−2x thereby decreasing the number of ferrous ions on octahedral sites, with a consequent decrease the dielectric constant. The most important result of γ-irradiation on the electrical properties is the change of ratio \({{\hbox {{Fe}}^{2+}}\left/{{\hbox {Fe}}^{3+}}\right.}\) on the octahedral site leading to increase the conductivity as well as the dielectric constant. The variation of the thermoelectric power with a temperature is performed, the common feature of all compositions is the fluctuation of Seebeck coefficient between positive and negative over the whole range of temperature. This indicates that the charge carriers are electrons and holes, depending on both the temperature range and the additive in the ferrite samples.

Keywords

Ferrite Octahedral Site Seebeck Coefficient Spinel Ferrite MgFe2O4 

References

  1. 1.
    Rezlescu E, Rezlescu N, Popa PD, Pasnicu C (1997) Phys Stat Sol (a) 162:673CrossRefGoogle Scholar
  2. 2.
    El Hiti MA (1996) J Magn Magn Mater 164:187CrossRefGoogle Scholar
  3. 3.
    Mazen SA, Mansour SF (2003) Cryst Res Technol 38(6):471CrossRefGoogle Scholar
  4. 4.
    Tareev B (1979) Physics of dielectric materials. Mir Publishers, MoscowGoogle Scholar
  5. 5.
    Darwish NZ, Hemeda OM, Abd El-Ati MI (1994) Appl Radiat Isot 45(4):445CrossRefGoogle Scholar
  6. 6.
    Valenzuela R (1994) Magnetic ceramics, Cambridge University Press.Google Scholar
  7. 7.
    Rezlescu N, Rezlescu E, Pasnicu C, Craus ML (1994) J Phys Condens Matter 6:5707CrossRefGoogle Scholar
  8. 8.
    Scholl F, Binder K (1980) Z Physiother B39:239Google Scholar
  9. 9.
    Shanon RD (1976) Acta Crystallogr A32:751CrossRefGoogle Scholar
  10. 10.
    Vasiliu A, Maxim Gh, Craus ML, Luca E (1972) Phy Stat Sol A 13:371CrossRefGoogle Scholar
  11. 11.
    Khan Y, Kneller E (1978) J Magn Mater 7:4CrossRefGoogle Scholar
  12. 12.
    Vijaya Kumar K, Ravinder D (2001) Int J Inorg Mater 3:661CrossRefGoogle Scholar
  13. 13.
    Standley KJ (1972) Oxide magnetic materials. Clarendon Press, OxfordGoogle Scholar
  14. 14.
    Verwey EJW, Heilmann EL Jr (1947) Chem Phys 15:174Google Scholar
  15. 15.
    Potalova A, Dzueru N, Romanov UP (1972) Phys Stat Sol (a) 12:623CrossRefGoogle Scholar
  16. 16.
    Ahmed MA (1989) Phys Stat Sol (a) 111:567CrossRefGoogle Scholar
  17. 17.
    Purushotham Y, Reddy VD, Sagar DR, Kishan P, Reddy PV (1993) Phys Stat Sol (a) 140:k89CrossRefGoogle Scholar
  18. 18.
    Vengopal Reddy P, Rao TS (1982) J Less Common Met 86:255CrossRefGoogle Scholar
  19. 19.
    Maxwell JC (1929) Electricity and Magnetism, vol 1. Oxford University Press, Oxford (Section 328)Google Scholar
  20. 20.
    Wagner KW (1913) Ann Phys Leipzig 40:817CrossRefGoogle Scholar
  21. 21.
    Koops CG (1951) Phys Rev 83:121CrossRefGoogle Scholar
  22. 22.
    Iwauchi K (1971) Jpn J Appl Phys 10:1520CrossRefGoogle Scholar
  23. 23.
    Smit J, Wijn HPJ (1959) Ferrites, Joan Wiley and Sons Publishing, New YorkGoogle Scholar
  24. 24.
    Abdeen AM (1998) J Magn Magn Mater 185:199CrossRefGoogle Scholar
  25. 25.
    Irkhin Y, Turov EA (1957) Sov Phys JETP 33:673Google Scholar
  26. 26.
    Mazen SA (2000) Mater Chem Phys 62:131–138CrossRefGoogle Scholar
  27. 27.
    Mirebeau I, Iancu G, Hennion M, Gaviolle G, Hubsch J (1996) Phys Rev B Condens Matter (USA) 54:22CrossRefGoogle Scholar
  28. 28.
    Mousa MA, Summan AM, Ahmed MA (1989) Thermochim Acta 144:45CrossRefGoogle Scholar
  29. 29.
    Murthy VKR, Sobanadri J (1976) Phys Stat Sol (a) 36:133CrossRefGoogle Scholar
  30. 30.
    Ahmed MA, Mohsen F (1997) Egypt J Phys 1:151Google Scholar
  31. 31.
    Hemeda OM, Darwish NZ (1994) Appl Phys Commun 13(1):29Google Scholar
  32. 32.
    Patil SA, Patil BL, Sawant SR (1993) Ind J Pure Appl Phys 31:904Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Physics Department, Faculty of ScienceCairo UniversityGizaEgypt

Personalised recommendations