Advertisement

Journal of Materials Science

, Volume 42, Issue 8, pp 2630–2632 | Cite as

Serrated flow in cast ZE43 alloy

  • C. Y. WangEmail author
  • X. N. Zhang
  • N. Z. Cao
  • Z. Liu
Article

Plastic deformation of solid solutions is occasionally accompanied by plastic instabilities, i.e. serrated flow or the Partevin-Le Chatelier (PLC) effect. The PLC effect has been observed and investigated in various kinds of aluminum alloys [1, 2, 3, 4, 5]. For most aluminum alloys, this effect is observed at ambient temperature. The dynamic interaction between mobile dislocations and diffusing solute atoms, known as dynamic strain aging (DSA), is commonly accepted to account for the observed phenomena [6, 7, 8, 9, 10, 11].

Compared to the extensive investigations on serrated flow of aluminum alloys, only a few papers have been concerned with the serrated flow in magnesium alloys. Couling [12] briefly reported the anomalous yielding effect in a Mg–0.5%Th alloy at testing temperatures from 373 K to 663 K. Chaturvedi et al. [13, 14] reported serrated flow in an Mg–10 wt.%Ag solid solution at temperatures between 326 K and 397 K. Zhu et al. [15] recently observed serrated flow in a...

Keywords

Magnesium Alloy Critical Strain Solute Atom Mobile Dislocation Dynamic Strain Aging 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Klose FB, Ziegenbein A, Hagemann F (2004) Mater Sci Eng A 369:76CrossRefGoogle Scholar
  2. 2.
    Tian B (2003) Mater Sci Eng A 349:272CrossRefGoogle Scholar
  3. 3.
    Thevenet D, Mliha M, Zeghloul A (1999) Mater Sci Eng A 266:175CrossRefGoogle Scholar
  4. 4.
    Tian B, Paris O, Prem M, Pink E., Fratzl P (2002) J Mater Sci 37:1355CrossRefGoogle Scholar
  5. 5.
    Kang J, Wilkinson DS, Embury JD, Jain M, Beaudoin AJ (2005) Scripta Mater 53:499CrossRefGoogle Scholar
  6. 6.
    Cottrell AH (1953) Phil Mag 44:829CrossRefGoogle Scholar
  7. 7.
    McCormick PG (1972) Acta Metall 20:351CrossRefGoogle Scholar
  8. 8.
    Sleeswyk AW (1958) Acta Metall 6:598CrossRefGoogle Scholar
  9. 9.
    McCormick PG (1988) Acta Metall 36:3061CrossRefGoogle Scholar
  10. 10.
    Mulford RA, Kocks UF ( 1979) Acta Metall 27:1125CrossRefGoogle Scholar
  11. 11.
    Akhtar A, Teghtsoonian E (1969) Acta Metall 17:1351CrossRefGoogle Scholar
  12. 12.
    Couling SL (1959) Acta Metall 7:133CrossRefGoogle Scholar
  13. 13.
    Chatuverdi MC, Lloyd DJ, Tangri K (1972) Metal Sci 6:16CrossRefGoogle Scholar
  14. 14.
    Chatuverdi MC, Lloyd DJ (1974) Phil Mag 30:1199CrossRefGoogle Scholar
  15. 15.
    Zhu SM, Nie JF (2004) Scripta Mater 50:51CrossRefGoogle Scholar
  16. 16.
    Corby C, Cáceres CH, Lukáč P (2004) Mater Sci Eng A387(389):22CrossRefGoogle Scholar
  17. 17.
    Cáceres CH, Griffiths JR, Davidson CJ, Newton CL (2002) Mater Sci Eng A 325:344 CrossRefGoogle Scholar
  18. 18.
    Cáceres CH, Rovera DM (2001) J Light Metals 1–3:151CrossRefGoogle Scholar
  19. 19.
    Cáceres CH, Blake A (2002) Phys Stat Sol 194:147CrossRefGoogle Scholar
  20. 20.
    Cáceres CH, Rodriguez H (1987) Acta Metall 35:2851CrossRefGoogle Scholar
  21. 21.
    Basinski ZS, Jackson PJ (1965) Appl Phys Lett 6:148CrossRefGoogle Scholar
  22. 22.
    Korbel A, Dybiec H (1981) Acta Metall 29:89CrossRefGoogle Scholar
  23. 23.
    Abbadi M, Hähner P, Zeghloul A (2002) Mater Sci Eng A 337:194CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  1. 1.Department of Materials EngineeringBohai Shipbuilding Vocational CollegeHuludaoP.R. China
  2. 2.Department of Materials Science and EngineeringShenyang University of TechnologyShenyangP.R. China

Personalised recommendations