Journal of Materials Science

, Volume 42, Issue 8, pp 2618–2629 | Cite as

Positron lifetime studies and coincidence Doppler broadening spectroscopy of Al–6Mg–xSc (x = 0 to 0.6 wt.%) alloy

  • M. S. Kaiser
  • P. M. G. NambissanEmail author
  • M. K. Banerjee
  • A. Sachdeva
  • P. K. Pujari


Positron annihilation spectroscopy (PAS), comprising of both positron lifetime and coincidence Doppler broadening measurements, has been employed for studying the phase decomposition behaviour of scandium doped Al–6Mg alloys. Micro structural and age hardening studies have also been conducted to substantiate the explanation of the results of PAS. Samples with scandium concentration ranging from 0 to 0.6 wt.% have been studied. The measured positron lifetimes of undoped alloy reveal that GP zones are absent in the as-prepared Al–6Mg alloy. The observed positron lifetimes and the results of coincidence Doppler broadening measurements largely stem from the entrap of positrons at the interface between aluminium rich primary dendrites and the magnesium enriched interdendritic eutectic mixture of Mg5Al8 (β) and the primary solid solution of aluminium (α). The study also provides evidence of the formation of scandium vacancy complexes in Al–6Mg alloys doped with scandium upto a concentration of 0.2 wt.%. However such complex formation ceases to continue beyond 0.2 wt.% Sc; instead, the formation of fine coherent precipitates of Al3Sc is recorded in the as prepared alloy containing 0.6 wt.% scandium. The positron annihilation studies coupled with CDBS have also corroborated with the fact that the fine coherent precipitates of Al3Sc are formed upon annealing the Al–6Mg alloys doped with scandium of concentration 0.2 wt.% and above. Transmission electron microscopic studies have provided good evidence of precipitate formation in annealed Al–6Mg–Sc alloys. Elevated temperature annealing leads to dissociation of the scandium-vacancy complexes, thereby leading to the enhancement of the mobility of magnesium atoms. This has facilitated fresh nucleation and growth of Mg5Al8 precipitates in the above alloys at 673 K.


Scandium Positron Annihilation Al3Sc Positron Lifetime Isochronal Annealing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Aiura T, Sugawara N, Miura Y (2000) Mater Sci Eng A 280:139CrossRefGoogle Scholar
  2. 2.
    Gaber A, Afify N (1992) J Mater Sci 27:1342CrossRefGoogle Scholar
  3. 3.
    Toropova LS, Eskin DG, Kharakterova MI, Dobatkina TV (1998) Advanced aluminium alloys containing scandium. Gordon and Breach Science Publishers, Amsterdam, p 39Google Scholar
  4. 4.
    Aluminium–magnesium (5000) alloys, knowledge article,, p 1Google Scholar
  5. 5.
    Lorimer GW, Nicholson RB (1969) The mechanism of phase transformation in crystalline solids. Monograph and Robert Series No. 33. The Institute of Metals, p 36Google Scholar
  6. 6.
    Ohta M, Yamada M, Kanadani T, Sakakibara A (1987) Mater Trans Jim 28:615CrossRefGoogle Scholar
  7. 7.
    Gaber AF, Afify N, Gadalla A, Mossad A (1999) High Temp–High Press 31:613CrossRefGoogle Scholar
  8. 8.
    Mcnelley TR, Lee EW, Mills ME (1986) Met Trans A 17:1035CrossRefGoogle Scholar
  9. 9.
    Lee EW, Mcnelley TR, Stengel AF (1986) Met Trans A 17:1043CrossRefGoogle Scholar
  10. 10.
    Polmear IJ (1987) Mater Sci Forum 13/14:195CrossRefGoogle Scholar
  11. 11.
    Sawtell RR, Jensen CL (1990) Met Trans A 21:421CrossRefGoogle Scholar
  12. 12.
    Drits ME, Pavlenko SV, Toropova LS, Bykov YuG, Ber LB (1981) Soviet Phys Dokl 26:344Google Scholar
  13. 13.
    Elagin VI, Zakharov VV, Rostova TD (1983) Metally Term Obbrab Met 7:57Google Scholar
  14. 14.
    Willy LA (1971) United States Patent No. 3,619,181Google Scholar
  15. 15.
    Dirts MD, Toropova LS, Bykov YuG (1983) Metally Term Obbrab Met 7:60Google Scholar
  16. 16.
    Kaygorodova LI, Domashnikov VP (1989) Fiz Metal Metalloved 68:792Google Scholar
  17. 17.
    Dupasquier A, Somoza A (1995) Mater Sci Forum 175–178:35 and references thereinGoogle Scholar
  18. 18.
    Mukherjee P, Nambissan PMG, Sen P, Barat P, Bandyopadhyay SK (1999) J Nucl Mater 273:238CrossRefGoogle Scholar
  19. 19.
    Dlubek G (1987) Mater Sci Forum 13–14:11CrossRefGoogle Scholar
  20. 20.
    Banerjee MK, Datta S (2000) J Mater Charac 44:277CrossRefGoogle Scholar
  21. 21.
    Kirkegaard P, Eldrup M, Mogensen OE, Pedersen NJ (1981) Comput Phys Commun 23:307CrossRefGoogle Scholar
  22. 22.
    Sachdeva A, Sudarshan K, Pujari PK, Goswami A, Sreejith K, George VC, Pillai CGS, Dua AK (2004) Diam Relat Mater 13:1719CrossRefGoogle Scholar
  23. 23.
    Mackenzie IK (1983) In: Brandt W, Dupasquier A (eds) Positron solid state physics. North Holland, Amsterdam, p 196Google Scholar
  24. 24.
    Puska MJ, Nieminen RM (1983) J Phys F Met Phys 13:333CrossRefGoogle Scholar
  25. 25.
    Hautojarvi P, Corbel C (1995) In: Dupasquier A, Mills AP Jr (eds) Positron spectroscopy of solids. Ios Press, Amsterdam, p 491Google Scholar
  26. 26.
    Bergersen B, Pajanne E, Kubica K, Stott MJ, Hodges CH (1974) Solid St Commun 15:1337CrossRefGoogle Scholar
  27. 27.
    Rodda JL, Stewart MG (1963) Philos Mag 131:255Google Scholar
  28. 28.
    Kaygorodova LI, Domashnikov VP, Shashkov OD (1989) Fiz Metal Metalloved 67:786Google Scholar
  29. 29.
    Kasier MS, Banerjee MK (2006) Indian Foundry J 52:29Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • M. S. Kaiser
    • 1
  • P. M. G. Nambissan
    • 2
    Email author
  • M. K. Banerjee
    • 3
  • A. Sachdeva
    • 4
  • P. K. Pujari
    • 4
  1. 1.Bengal Engineering and Science UniversityHowrahIndia
  2. 2.Saha Institute of Nuclear PhysicsKolkataIndia
  3. 3.Government College of Engineering and Ceramic TechnologyKolkataIndia
  4. 4.Radiochemistry DivisionBhabha Atomic Research CentreMumbaiIndia

Personalised recommendations