Journal of Materials Science

, Volume 42, Issue 8, pp 2586–2590 | Cite as

Preparation, microstructure and electrorheological property of nano-sized TiO2 particle materials doped with metal oxides

  • Yan-Li Shang
  • Yun-Ling Jia
  • Fu-Hui Liao
  • Jun-Ran LiEmail author
  • Ming-Xiu Li
  • Juan Wang
  • Shao-Hua Zhang


New nano-sized TiO2 electrorheological (ER) materials doped with different metal (M = Na, Zr, Ce, Al, Ca, Zn) oxides have been prepared. Relationships between the composition, microstructure, conductivity, dielectric property and ER effect of these materials have been studied. The results show that doping Na2O, ZrO2, Al2O3 or CeO2 can enhance the ER performance of the TiO2 material, whereas, doping CaO or ZnO would decrease the ER activity of the material. The shear stress (τE) of the suspension (25 wt%) of Na-doped TiO2 in dimethyl silicone oil reaches 1.6 kPa at the electric field strength E = 4.2 kV/mm and shear rate γ = 300 s−1, and its τr value of 54.6 (τr = τE0, where τ0 is the shear stress at no electric field) is seven times higher than that of pure TiO2 suspension. This high τr value is very advantageous to the use. The dielectric loss tangent (tanδ) plays a dominant role in influencing the ER performance of a particle material, and the effect of the surface area (pore volume, especially) and grain size should be taken into account.


TiO2 CeO2 Particle Material Pure TiO2 Dielectric Loss Tangent 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This Project is supported by the State Key Laboratory of Vehicle Transmission (51457030103 JW0201), the National Natural Science Foundation of China (20023005, 29831010) and the National Key Project for Fundamental Research (G1998061305).


  1. 1.
    Winslow WM (1949) J Appl Phys 20:1137CrossRefGoogle Scholar
  2. 2.
    Block H, Kelly JP (1988) J Phys D: Appl Phys 21:1661CrossRefGoogle Scholar
  3. 3.
    Halsey TC (1992) Science, New Series 258:761Google Scholar
  4. 4.
    Winslow WM (1947) US Patent Specification 2417850Google Scholar
  5. 5.
    Hao T (2001) Adv Mater 13:1847CrossRefGoogle Scholar
  6. 6.
    Hao T (2002) Adv Colloid Interface Sci 97:1CrossRefGoogle Scholar
  7. 7.
    Hao T, Kawai A, Ikazaki F (1998) Langmuir 14:1256CrossRefGoogle Scholar
  8. 8.
    Zhao XP et al. (2001) Chinese Patent No 99115944.6Google Scholar
  9. 9.
    Yin JB, Zhao XP (2001) Chin Phys Lett 18:1144CrossRefGoogle Scholar
  10. 10.
    Zhao XP, Yin JB, Xiang LQ, Zhao Q (2002) Int J Mod Phys B 16:2371CrossRefGoogle Scholar
  11. 11.
    Zhao XP, Yin JB (2002) Chem Mater 14:2258CrossRefGoogle Scholar
  12. 12.
    Yin JB, Zhao XP (2002) Chem Mater 14:4633CrossRefGoogle Scholar
  13. 13.
    Zhao XP, Yin JB, Xiang LQ, Zhao Q (2002) J Mater Sci 37:2569CrossRefGoogle Scholar
  14. 14.
    Yin JB, Zhao XP (2004) Chem Mater 16:321CrossRefGoogle Scholar
  15. 15.
    Wu Q, Zhao BY, Chen LS, Hu KA (2004) Scripta Mater 50:635CrossRefGoogle Scholar
  16. 16.
    Ferreira VM, Baptista JL, Kamba S, Petzelt J (1993) J Mater Sci 28:5894CrossRefGoogle Scholar
  17. 17.
    Guiner A (1964) Theorie et Technique de la Radiocrystallographie, 3rd edn. Dunod, Paris, France, p 482Google Scholar
  18. 18.
    Ma SZ, Liao FH, Li JR et al (2003) J Mater Chem 13:3096CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  • Yan-Li Shang
    • 1
    • 2
  • Yun-Ling Jia
    • 1
    • 2
  • Fu-Hui Liao
    • 1
  • Jun-Ran Li
    • 1
    Email author
  • Ming-Xiu Li
    • 2
  • Juan Wang
    • 3
  • Shao-Hua Zhang
    • 3
  1. 1.State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular EngineeringPeking UniversityBeijingChina
  2. 2.Department of ChemistryHebei Normal UniversityShijiazhuangChina
  3. 3.School of Vehicle and Transmission EngineeringBeijing Institute of TechnologyBeijingChina

Personalised recommendations