Journal of Materials Science

, Volume 42, Issue 16, pp 6942–6945 | Cite as

Synthesis and fluorescence spectrum analysis of CdS nanocrystals

  • Wanbang Xu
  • Yongxian WangEmail author
  • Ronghui Xu
  • Sheng Liang
  • Guoxin Zhang
  • Duanzhi Yin


An optimized synthesis route was applied for control the preparation of CdS nanocrystals (NCs) in an aqueous solution. Some key factors which influencing the characters of CdS NCs, such as stabilizers, ratio of reactant etc, were investigated. It was found that the fluorescence (FL) intensity of CdS NCs could be dramatically enhanced by refluxing. The size, shape, crystal structure and the optical properties of CdS NCs were also characterized by TEM, XRD, UV–Vis and FL spectra. The result showed that the well-disperse spheres CdS NCs with 6 nm in diameter were obtained.


Vinyl Pyrrolidone Mercaptoacetic Acid Sodium Hexametaphosphate Sodium Sulfide Sodium Sulfide Solution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was financially supported by the National Natural Science Foundation of China (10405034), and the fund of knowledge innovation projects of Chinese Academy of Sciences (KJCXI-SW-08).


  1. 1.
    Michalet X, Pinaud FF, Bentolila LA, Tsay JM, Doose S, Li JJ, Sundaresan G, Wu AM, Gambhir SS, Weiss S (2005) Science 307:538CrossRefGoogle Scholar
  2. 2.
    Bruchez M, Moronne M, Gin P, Weiss S, Alivisatos AP (1998) Science 281:2013CrossRefGoogle Scholar
  3. 3.
    Chan WCW, Nie SM (1998) Science 281:2016CrossRefGoogle Scholar
  4. 4.
    Jie JS, Zhang WJ, Jiang Y, Meng XM, Li YQ, Lee ST(2006) Nano Lett 6(9):1887CrossRefGoogle Scholar
  5. 5.
    Li J, Wu C, Gao F, Zhang R, Lv G, Fu D, Chen B, Wang X (2006) Bioorg Med Chem Lett 16:4808CrossRefGoogle Scholar
  6. 6.
    Cai ZX, Yang H, Zhang Y, Yan XP (2006) Anal Chem Acta 559(2):234CrossRefGoogle Scholar
  7. 7.
    Xu WB, Wang YX, Xu RH, Yin DZ (2006) J Inorg Mater 21:1031Google Scholar
  8. 8.
    Xu HE, Yan CE (2005) Prog Chem 17(5):800Google Scholar
  9. 9.
    Peng Z, Peng XG (2001) J Am Chem Soc 123:183–184CrossRefGoogle Scholar
  10. 10.
    Aldana J, Lavelle N, Wang YJ, Peng XG (2005) J Am Chem Soc 127(8):2496CrossRefGoogle Scholar
  11. 11.
    Zhang Y, Zhang JX, Fu DG, Wang YH, Liu JZ, Lu ZH (1999) Chinese J Inorg Chem 15:595Google Scholar
  12. 12.
    Jiang L, Chen X, Yang WS, Jin J, Yang BQ, Xu L, Li TJ (2001) Chem J Chinese U 22:1397Google Scholar
  13. 13.
    Wankhede ME, Haram SK (2003) Chem Mater 15(6):1296CrossRefGoogle Scholar
  14. 14.
    Gacoin T, Lahlil K, Larregaray P, Boilot JP (2001) J Phys Chem B 105(42):10228CrossRefGoogle Scholar
  15. 15.
    Gaponik N, Talapin DV, Rogach AL (2002) J Phys Chem B 106(29):7177CrossRefGoogle Scholar
  16. 16.
    Cao WL, Zhang KH, Zhang JK (2002) Chinese J Inorg Chem 18(10):997Google Scholar
  17. 17.
    Yochelis S, Hodes G (2004) Chem Mater 16:2740CrossRefGoogle Scholar
  18. 18.
    Frank S, William R (1937) J Am Chem Soc 59(2):354CrossRefGoogle Scholar
  19. 19.
    Pan DC, Wang Q, Jiang SC, Ji XL, An LJ (2005) Adv Mater 17:176CrossRefGoogle Scholar
  20. 20.
    Zhao XW, Komuro S, Fujita S, Isshiki H, Aoyagi Y, Sugano T (1998) Mat Sci Eng B – Solid 51:154CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Wanbang Xu
    • 1
  • Yongxian Wang
    • 1
    Email author
  • Ronghui Xu
    • 1
  • Sheng Liang
    • 1
  • Guoxin Zhang
    • 1
  • Duanzhi Yin
    • 1
  1. 1.Shanghai Institute of Applied Physics, Chinese Academy of SciencesShanghaiChina

Personalised recommendations