Journal of Materials Science

, Volume 42, Issue 16, pp 6847–6853 | Cite as

Thermoelectrical properties and optical third harmonic generation of Gd-doped PbTe

  • K. Nouneh
  • K. J. Plucinski
  • M. Bakasse
  • I. V. KitykEmail author


We performed the temperature measurements of transport and non-linear optical properties, particularly optical third harmonic generation of PbTe and Gd-doped PbTe to elucidate the effect of the rare earth ion doping on behavior of the thermal conductivity and the third-order non-linear optical susceptibility. The feature of Gd-doped PbTe shows the existence of small values of the low temperature resistivities, (\({10^{-6}\Omega\,\hbox{cm}}\)) and a very significant value of mobility \({\mu=1.5^{\ast}10^{6}\hbox{cm}^{2}\hbox{V}^{-1} \hbox{s}^{-1}}\). The thermal conductivity κ decreases with incorporation of the rare earth ion (Gd) in PbTe matrice. The optical third harmonic generation (THG) shows that the great contribution of the phonons observed for PbGdTe compared to the PbTe, enhances the lattice thermal conductivity of network \({(\hbox{k}_{\rm ph})}\).


PbTe Seebeck Coefficient Thermoelectric Material Lattice Thermal Conductivity Third Harmonic Generation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We acknowledge helpful discussions with Professor S. Benet (LP2A, University Perpignan, France). S. Charar (Group Etudes Semiconductor GES, University Montpellier II, France) for very useful discussions and suggestions concerning the transport part of the paper and Z. Golacki (Institute of Physics, Warsaw, Poland) for the sample preparations.


  1. 1.
    Sales BC, Mandrus D, Chakoumakos BC, Keppens V, Thompson JR (1997) Phys Rev B 56:15081CrossRefGoogle Scholar
  2. 2.
    Charar S, Tedenac JC, Potin V, Viennois R, Laire O, Fau C, Liautard B (2000) Physica Status Solidi (A) 182:669CrossRefGoogle Scholar
  3. 3.
    Grover B (1965) Phys Rev 140(6A):A 1944CrossRefGoogle Scholar
  4. 4.
    Kityk IV, Gruhn W, Sahraoui B (2004) Optics and lasers in engineering 41:51CrossRefGoogle Scholar
  5. 5.
    Efros AL, Shklovskii BI (1975) J Phys C: Solid State Phys 8:L49CrossRefGoogle Scholar
  6. 6.
    Dugaev VK (2000) Inorg Mater 36(5):524CrossRefGoogle Scholar
  7. 7.
    Commercial Apparatus for Measuring Thermal Transport Properties from 1.9 to 390Google Scholar
  8. 8.
    Kityk I (1994) J Phys Condens Matt 6:4119CrossRefGoogle Scholar
  9. 9.
    Kityk I, Jakubczyk E (1999) Appl Opt 38:3152CrossRefGoogle Scholar
  10. 10.
    Bruno A, Lascaray JP, Averous M, Fillion G, Dumas JF (1988) Phys Rev B 37:1186CrossRefGoogle Scholar
  11. 11.
    Averous M, Lombos BA, Fau C, Ilbnouelghazi E, Tedenac JC, Brun G, Bartkowski MA (1985) Phys Stat Sol (b) 131:759CrossRefGoogle Scholar
  12. 12.
    Sur I, Casian A, Balandin A (2004) Phy Rev B 69:035306CrossRefGoogle Scholar
  13. 13.
    Plucinski K, Kityk IV, Makowska-Janusik M (2000) Cryst Res Technol 3511:1305CrossRefGoogle Scholar
  14. 14.
    Tkaczyk S, Kityk IV, Viennois R (2004) . Manifestation of grain boundaries in the transport properties of p-sexiphenyl films.// J Chem Phys (USA), V.121, Is.:517Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • K. Nouneh
    • 1
  • K. J. Plucinski
    • 2
    • 3
  • M. Bakasse
    • 4
  • I. V. Kityk
    • 2
    Email author
  1. 1.Groupe d’Etude des SemiconducteursUniversité Montpellier IIMontpellierFrance
  2. 2.Institute of PhysicsJ. Dlugosz University of CzestochowaCzestochowaPoland
  3. 3.Institute of ElectronicsMilitary University of TechnologyWarsawPoland
  4. 4.Faculty of ScienceUniversity Chouaib DoukkaliEl JadidaMorocco

Personalised recommendations