Advertisement

Journal of Materials Science

, Volume 42, Issue 16, pp 6837–6846 | Cite as

A comparative study of the volume stability of C–S–H (I) and Portland cement paste in aqueous salt solutions

  • H. Dramé
  • J. J. BeaudoinEmail author
  • L. Raki
Article

Abstract

Ordinary Portland cement (OPC) paste specimens and compacted C–S–H (I) powders were immersed in distilled water and aqueous salt solutions of varying concentration to study their volume change behavior. Immersion resulted in ionic interaction leading to various degrees of expansion, leaching, softening and dissolution of the test samples. In all cases relatively rapid expansion occurred. The expansion of C–S–H (I) in aggressive media was found to be large and fast in MgCl2, MgSO4, LiOH, LiNO3 and calcium (magnesium) acetate (CaMgAc) solutions. LiCl, CaCl2 and NaCl were moderately aggressive towards C–S–H (I) depending on the solution concentration. Trends in the length change behavior of OPC paste are similar to that of synthesized C–S–H (I). Similarities were observed between the length change behavior of compacted C–S–H (I) and the swelling of smectite clays in contact with these osmotic media. The similarities are compatible with explanations of expansion provided by both the osmotic and the electrical double layer (EDL) theories. The relationship between the expansive behavior of C–S–H and both Na and Ca Montmorillonite in contact with aqueous salt solutions is discussed extensively in the context of its significance in cement science.

Keywords

Portland Cement Length Change LiOH Brucite Aqueous Salt Solution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Brown PW, Taylor HFW (2000) In: Marchand J, Skalny JP (eds) Materials science of concrete: special volume on sulfate attack mechanisms. American Ceramic Society, p 73Google Scholar
  2. 2.
    Marchand J, Samson E, Maltais Y (2000) In: Marchand J, Skalny JP (eds) Materials science of concrete: special volume on sulfate attack mechanisms. American Ceramic Society, p 211Google Scholar
  3. 3.
    Litvan GG (1980) In: Proceedings of the 7th international congress on chemistry of cement, Paris, France, vol 3, pp VII-46–VII-46–VII-50Google Scholar
  4. 4.
    Santhanam M, Cohen MD, Olek J (2003) Cem Concr Res 33(3):325CrossRefGoogle Scholar
  5. 5.
    Santhanam M, Cohen MD, Olek J (2003) Cem Concr Res 33(3):341CrossRefGoogle Scholar
  6. 6.
    Taylor HFW, Famy C, Scrivener K (2001) Cem Concr Res 31:683CrossRefGoogle Scholar
  7. 7.
    Skalny J, Marchand J, Odler I (2002) Sulfate attack on concrete. Spon Press, New York, p. 217Google Scholar
  8. 8.
    Beaudoin JJ, Raki L, Marchand J (2003) J Mater Sci 38:4957. DOI: 10.1023/B:JMSC.0000004419.94744.4FCrossRefGoogle Scholar
  9. 9.
    Roßler C, Stark J, Steiniger F, Tichelaar W (2006) J Am Ceram Soc 89:627CrossRefGoogle Scholar
  10. 10.
    Richardson GI (2004) Cem Concr Res 34(9):1733CrossRefGoogle Scholar
  11. 11.
    Beaudoin JJ (2004) In: Ramchandran VS, Beaudoin JJ (eds) Handbook of analytical techniques in concrete science and technology, chap. II. William Andrew Publishers, New York, p 964Google Scholar
  12. 12.
    Greenberg SA (1954) J Phys Chem 58:362CrossRefGoogle Scholar
  13. 13.
    Pointeau I, Piriou B, Fedoroff M, Bartes GM, Marmier N, Fromage F (2001) J Coll Int Sci 236:252CrossRefGoogle Scholar
  14. 14.
    Taylor HFW (1986) J Am Ceram Soc 69(6):464CrossRefGoogle Scholar
  15. 15.
    Terisse VH, Nonat A, Petit CJ (2001) J Coll Int Sci 244:58CrossRefGoogle Scholar
  16. 16.
    Beaudoin JJ (1999) Concr Int 21(8):86Google Scholar
  17. 17.
    Hong S-Y, Glasser FP (1999) Cem Concr Res 29:1893CrossRefGoogle Scholar
  18. 18.
    Hong S-Y, Glasser FP (2002) Cem Concr Res 32:1101CrossRefGoogle Scholar
  19. 19.
    Van Olphen H (1977) An introduction to clay colloid chemistry, 2nd edn. Wiley, p 318Google Scholar
  20. 20.
    Mcbride MB (1994) Environmental chemistry of soils. Oxford University Press, p 416Google Scholar
  21. 21.
    Velde B (1992) Introduction to clay minerals: chemistry, origins, uses and environmental significances, 1st edn. Chapman and Hall, p 195Google Scholar
  22. 22.
    Newman ACD (1987) Chemistry of clays and clay minerals. Monograph No. 6, Mineralogical Society, p. 480Google Scholar
  23. 23.
    Luckham PF, Rossi S (1999) Adv Coll Int Sci 248:231Google Scholar
  24. 24.
    Lubertkin DS, Midlleton RS, Ottewill RH (1984) Phil Trans R Soc Lond A311:133Google Scholar
  25. 25.
    Huerta M, Mcquarrie DA (1991) Electrochem Acta 36(11/12):1751CrossRefGoogle Scholar
  26. 26.
    Quirk JP (1952) PhD. Thesis, University of London, p 312Google Scholar
  27. 27.
    Norish K (1954) Discuss Faraday Soc 18:120CrossRefGoogle Scholar
  28. 28.
    Aylmore LA, Quirk JP (1962) Clays Clay Miner 9:104CrossRefGoogle Scholar
  29. 29.
    Kjellander R, Marcelja S, Quirk JP (1988) J Coll Int Sci 126(1):194CrossRefGoogle Scholar
  30. 30.
    Catinaud S, Beaudoin JJ, Marchand J (2001) Concr Sci Eng 3:100Google Scholar
  31. 31.
    Feldman RF, Ramachandran VS (1989) Cemento 86(2):87Google Scholar
  32. 32.
    Alizadeh R, Beaudoin JJ, Raki L (2007) J Am Ceram Soc 90(2):670CrossRefGoogle Scholar
  33. 33.
    Beaudoin JJ, Catinaud S, Marchand J (2001) Cem Concr Res 31:149CrossRefGoogle Scholar
  34. 34.
    Shaw DJ (1992) Colloid and surface chemistry, 4th edn. Butterworth-Heinemann Ltd., p 320Google Scholar
  35. 35.
    Viallis H, Nonat A, Petit J-C (2001) J Coll Int Sci 244:58CrossRefGoogle Scholar
  36. 36.
    Kjellander R, Marcelja S, Quirk JP (1988) J Phys Chem 92:6489CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Institute for Research in Construction, National Research Council of CanadaOttawaCanada

Personalised recommendations