Journal of Materials Science

, Volume 42, Issue 16, pp 6946–6950 | Cite as

Surface reactivity and electrophoretic deposition of ZrO2–MgO mechanical mixture

  • Ricardo H. R. CastroEmail author
  • Paulo J. B. Marcos
  • Eduardo K. Sakamoto
  • Douglas Gouvêa


Electrophoretic deposition (EPD) is a precision technique useful for obtaining high quality ceramic bodies with controlled dimensions and smooth coatings. The electrophoretic deposition rate is highly dependent on the surface chemistry of the powders, especially when dealing with multi-component systems. The objective of this work is to study the surface reactivity of both ZrO2 and MgO in ethanol suspension to provide experimental benchmarks to control EPD of a ZrO2–3 wt% MgO mechanical mixture (Z3M) in ethanol. Infrared spectroscopy (FTIR) showed that ZrO2 surface spontaneously reacts with ethanol, generating negative electrophoretic mobility of the particles (−0.07 × 10−8 V−1 s−1) measured by Electroacoustic Sonic Amplitude (ESA). MgO surface also spontaneously reacted with ethanol, but a positive electrophoretic mobility was observed in this case (0.26 × 10−8 V−1 s−1). Scanning Electron Microscopy of Z3M dried from ethanol suspension showed that MgO particles were located around the ZrO2 particles, forming composite agglomerates, probably due to the electrostatic attraction between MgO and ZrO2 particles. Homogeneous deposits could be obtained from EPD of Z3M ethanol suspensions. Mercury intrusion porosimetry showed that the ZrO2–MgO green deposited bodies using different voltages had similar pores diameters distributions, indicating that the ZrO2–MgO agglomerates are not affected by the increasing deposition rates.


Applied Voltage Electrophoretic Mobility Ethoxide Mercury Intrusion Porosimetry Electrophoretic Deposition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors wish to thank FAPESP (Fundação de Amparo à Pesquisa do Estado de São Paulo) processes 05/53241-9 and 05/55335-0; and CAPES (Coordenação do Aperfeiçoamento de Pessoal de Nível Superior) for the financial support.


  1. 1.
    Richerson DW (1992) Modern ceramic engineering: properties, processing, and use in designGoogle Scholar
  2. 2.
    Chiang Y-M, Birnie D, Kingery WD (1997) Physical ceramics – principles for ceramic science and engineering. John Wiley & Sibs Inc., New YorkGoogle Scholar
  3. 3.
    Persson M (1994) In: Pugh RJ, Bergstrom L (eds) Surface and colloid chemistry in advanced ceramic processing. Marcell Decker, New YorkGoogle Scholar
  4. 4.
    Hirata Y, Numaguchi N, Shih WH (1999) In: Novel synthesis and processing of ceramics. p 127Google Scholar
  5. 5.
    Sarkar P, Nicholson PS (1996) J Am Ceram Soc 79:1987CrossRefGoogle Scholar
  6. 6.
    Sarkar P, De D, Rho H (2004) J Mater Sci 39:819CrossRefGoogle Scholar
  7. 7.
    Tabellion J, Clasen R (2004) J Mater Sci 39:803CrossRefGoogle Scholar
  8. 8.
    Negishi H, Yamaji K, Sakai N, Horita T, Yanagishita H, Yokokawa H (2004) J Mater Sci 39:833CrossRefGoogle Scholar
  9. 9.
    Readey MJ, Lee RR, Halloran JW, Heuer AH (1990) J Am Ceram Soc 73:1499CrossRefGoogle Scholar
  10. 10.
    Hadraba H, Maca K, Cihlar J (2004) Ceram Int 30:853Google Scholar
  11. 11.
    Zhitomirsky I, Petric A (2000) J Eur Ceram Soc 20:2055CrossRefGoogle Scholar
  12. 12.
    Put S, Vleugels J, Van Der Biest O (2003) J Mater Proce Technol 143:572CrossRefGoogle Scholar
  13. 13.
    Muccillo R, Muccillo ENS, Saito NH (1998) Mater Lett 34:128CrossRefGoogle Scholar
  14. 14.
    Ferrari B, Moreno R, Sarkar P, Nicholson PS (2000) J Eur Ceram Soc 20:99CrossRefGoogle Scholar
  15. 15.
    Vanderhoeven PHC, Lyklema J (1992) Adv Colloid Interface Sci 42:205CrossRefGoogle Scholar
  16. 16.
    Bruinsma PJ, Smith PA, Bunker BC (1997) J Phys Chem B 101:8410CrossRefGoogle Scholar
  17. 17.
    Kaliszewski MS, Heuer AH (1990) J Am Ceram Soc 73:1504CrossRefGoogle Scholar
  18. 18.
    Di Valentin C, Del Vitto A, Pacchioni G, Abbet S, Worz AS, Judai K, Heiz U (2002) J Phys Chem B 106:11961CrossRefGoogle Scholar
  19. 19.
    Fouad NE, Thomasson P, Knozinger H (2000) Appl Catal A-Gen 196:125CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Ricardo H. R. Castro
    • 1
    Email author
  • Paulo J. B. Marcos
    • 2
  • Eduardo K. Sakamoto
    • 2
  • Douglas Gouvêa
    • 2
  1. 1.Department of Materials EngineeringCentro Universitário da FEISão Bernardo do CampoBrazil
  2. 2.Department of Metallurgical and Materials Engineering, Escola PolitécnicaUniversity of São PauloSão PauloBrazil

Personalised recommendations