Advertisement

Journal of Materials Science

, Volume 42, Issue 8, pp 2724–2734 | Cite as

Kinetics, mechanism and modelling of microstructural evolution during thermomechanical processing of a 15Cr–15Ni–2.2Mo–Ti modified austenitic stainless steel

  • Sumantra Mandal
  • P. V. Sivaprasad
  • R. K. Dube
Article

Abstract

The paper discusses the kinetics, mechanism and modelling of the microstructural evolution of a 15Cr–15Ni–2.2Mo–0.3Ti modified austenitic stainless steel (alloy D9) during dynamic recrystallization (DRX). The experimental methodology included different hot working operations employing industrial equipment such as forge hammer, hydraulic press and rolling carried out in the temperature range 1,173–1,473 K to various strain levels. The kinetics of DRX has been investigated employing modified Johnson–Mehl–Avrami–Kolmogorov (JMAK) model. It has been found that the value of Avrami exponent varies in a close range of 1.17–1.34 which implies that D9 exhibits growth controlled DRX. Optical metallography has revealed that nucleation of DRX grains occurred along the prior grain boundaries by bulging mechanism. Microstructural characterization has shown that a significant correlation between microstructural features and processing parameters exists. However, this interrelation is ambiguous and fuzzy in nature. Therefore an artificial neural network model has been developed to predict the microstructural features, namely fraction of DRX and grain size, at different processing conditions. A good correlation between experimental findings and predicted results has been obtained. An instantaneous microstructure, therefore, can be designed in order to optimize the process parameters based on microstructural evolution.

Keywords

Artificial Neural Network Microstructural Evolution Austenitic Stainless Steel Orientation Image Microscopy Electron Back Scatter Diffraction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The authors would like to express their sincere thanks to Dr. S. Venugopal, Head, Metal Forming & Tribology Section and Dr. S.K. Ray, Head, Materials Technology Division for useful discussions. The authors also gratefully acknowledge Dr. S.L. Mannan, Director, Metallurgy & Materials Group and Dr. Baldev Raj, Director, Indira Gandhi Centre for Atomic Research (IGCAR) for their constant encouragement throughout the course of this work. The authors also thank the reviewers for making very useful suggestions/comments.

References

  1. 1.
    Mannan SL, Sivaprasad PV (2001) In: Jurgen Buschow KH, Cahn RW, Flemings MC, Ilschner B, Kramer EJ, Mahajan S (eds) Encyclopedia of materials science and technology, vol 3. Elsevier, New York, pp 2857–2865Google Scholar
  2. 2.
    Venkadesan S, Sivaprasad PV, Narayanan C, Shanmugam V (1992) In: Rao PK et al (eds) Proceedings of the international conference on stainless steels INCOSS-89, Ind Inst Metals, Bombay, Feb 1989. Omega Scientific Publishers, New Delhi, pp 345-360Google Scholar
  3. 3.
    Wang X, Brunger E, Gottstein G (2002) Scr Mater 46:875CrossRefGoogle Scholar
  4. 4.
    Belyakov A, Miura H, Sakai T (2000) Scr Mater 43:21CrossRefGoogle Scholar
  5. 5.
    Sivaprasad PV (1997) PhD Thesis, IIT BombayGoogle Scholar
  6. 6.
    Miaoquan L, Aiming X, Weichao H (2003) Mater Character 49:203Google Scholar
  7. 7.
    Sakai T, Ohashi M, Chaiba K (1988) Acta Metal 36(7):1781CrossRefGoogle Scholar
  8. 8.
    Liu WC, Morris JG (2005) Mater Sci Eng A 402:215CrossRefGoogle Scholar
  9. 9.
    Weiping Y, Gall RL, Saindrenan G (2002) Mater Sci Eng A 332:41CrossRefGoogle Scholar
  10. 10.
    Prasad YVRK, Ravichandran N (1991) Bull Mater Sci 14:1241CrossRefGoogle Scholar
  11. 11.
    Mandal S, Sivaprasad PV, Venugopal S, Murthy KPN (2006) Modelling Simul Mater Sci Eng 14:1053CrossRefGoogle Scholar
  12. 12.
    Venugopal S, Sivaprasad PV, Venkadesan S, Effect of annealing temperature on engineering properties of alloy D9, unpublished workGoogle Scholar
  13. 13.
    Wahabi M, Cabrera JM, Prado JM (2003) Mater Sci Eng A 343:116CrossRefGoogle Scholar
  14. 14.
    Sivaprasad PV, Mannan SL, Prasad YVRK, Chaturvedi RC (2002) Mater Sci Technol 17:545CrossRefGoogle Scholar
  15. 15.
    Sakai T, Jonas JJ (1984) Acta Metal 32(2):189CrossRefGoogle Scholar
  16. 16.
    Ponge D, Gottstein G (1998) Acta Mater 46(1):69CrossRefGoogle Scholar
  17. 17.
    Karduck P, Gottstein G, Mecking H (1983) Acta Mater 31:1525CrossRefGoogle Scholar
  18. 18.
    Brunger E, Wang X, Gottstein G (1998) Scr Mater 38(12):1843CrossRefGoogle Scholar
  19. 19.
    Hasegawa M, Yamamoto M, Fukutomi H (2003) Acta Mater 51:3939CrossRefGoogle Scholar
  20. 20.
    Barrett CS, Levenson LH (1940) Trans AIME 137:112Google Scholar
  21. 21.
    Hasegawa M, Fukutomi H (2002) Mater Trans 43:2243CrossRefGoogle Scholar
  22. 22.
    Gottstein G (1984) Acta Metal 32:1117CrossRefGoogle Scholar
  23. 23.
    Wang X, Brunger E, Gottstein G (2002) Scr Mater 46:875CrossRefGoogle Scholar
  24. 24.
    Juang SC, Tarang YS, Lii HR (1998) J Mater Process Technol 75:54CrossRefGoogle Scholar
  25. 25.
    Reidimiller M, Braun H (1993) Proceedings of the international conference in neural networks, San Francisco, CAGoogle Scholar
  26. 26.
    Reidimiller M (1994) Special issue on Neural Netw 5Google Scholar
  27. 27.
    Tollenaere T (1990) Neural Netw 3(5):561CrossRefGoogle Scholar
  28. 28.
    Olden JD, Jackson DA (2002) Ecol Model 154:135CrossRefGoogle Scholar
  29. 29.
    Gevrey M, Dimopoulos I, Lek S (2003) Ecol Model 160:249CrossRefGoogle Scholar
  30. 30.
    Garson GD (1991) Artif Intell Expert 6:47Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Sumantra Mandal
    • 1
  • P. V. Sivaprasad
    • 1
  • R. K. Dube
    • 2
  1. 1.Materials Technology DivisionIndira Gandhi Centre for Atomic ResearchKalpakkamIndia
  2. 2.Department of Materials and Metallurgical EngineeringIIT KanpurKanpurIndia

Personalised recommendations