Journal of Materials Science

, Volume 42, Issue 15, pp 6469–6476 | Cite as

The physical and photo electrochemical characterization of the crednerite CuMnO2

  • Yassine Bessekhouad
  • Yamina Gabes
  • Aissa Bouguelia
  • Mohamed TrariEmail author


CuMnO2 is prepared via Cu+ → Li+ exchange in molten copper (I) chloride. It crystallizes in a monoclinic structure (SG C2/m) where the MnO6 octahedra elongation is ascribed to the Yahn–Teller (Y–T) effect of Mn3+ ions. From chemical analysis, the oxide is more accurately formulated as CuMnO2.01. Above 250 °C, it undergoes a reversible transition to spinel CuxMn3−xO4 and beyond 940 °C it converts back to Cu1.1Mn0.9O2. Extrapolation of high-temperature magnetic data indicates T-intercept θp of −450 K and an effective moment of 5.22 μB, consistent with strong antiferromagnetism in the basal plans and high spin (HS) configuration Mn3+. This value is slightly larger than that of the spin only moment, a behavior ascribed to Cu2+ originating from oxygen insertion. As prepared, CuMnO2 displays p-type conductivity with an activation energy of 0.16 eV. Most holes generated upon band gap excitation are trapped on Cu+ ions and the conduction occurs by small polarons hopping between neighboring sites. The linear increase of thermopower for Cu1.05Mn0.95O2 with temperature indicates a hole mobility μ300 K (3.5 × 10-6 cm2 V−1 s−1) thermally activated. CuMnO2 is made p- and n-type and the difference in the carriers mobilities is attributed to different oxygen polyhedra. The title oxide, characterized photo electrochemically, exhibits a pH-insensitive flat band potential (+0.13 VSCE). The valence band, located at 5.3 eV below vacuum, is made up of Cu 3d orbital. As application, the powder showed a good performance for the H2-photo evolution.


Small Polaron MnO6 Octahedra Oxygen Insertion Antiferromagnetic Lattice Zero Zeta Potential 



This work was financially supported by the Faculty of Chemistry (Algiers) under the contact No. E1602/07/04. The authors would like to thank B. Biri for his technical assistance and helpful discussions.


  1. 1.
    Turner JA (2004) Science 305:972CrossRefGoogle Scholar
  2. 2.
    Marquardt MA, Ashmore NA, Cann DP (2006) Thin Solid Films 496:146CrossRefGoogle Scholar
  3. 3.
    Li J, Sleight AW, Jones CY, Toby BH (2005) J Solid State Chem 178:285CrossRefGoogle Scholar
  4. 4.
    Doumerc JP, Wichainchai A, Ammar A, Pouchard M, Hagenmeller P (1986) Mater Res Bull 21:745CrossRefGoogle Scholar
  5. 5.
    Subrahmanyam A, Barik UK (2005) J Phys Chem Solids 66:817CrossRefGoogle Scholar
  6. 6.
    Bruce Gall R, Nathan Ashmore, Meagen Marquardt A, Xiaoli Tan, David P (2005) Can J Alloys Compd 391:262CrossRefGoogle Scholar
  7. 7.
    Younsi M, Aider A, Bouguelia A, Trari M (2005) Solar Energy 78:574CrossRefGoogle Scholar
  8. 8.
    Bessekhouad Y, Trari M, Doumerc JP (2003) Int J Hydrogen Energy 28:43CrossRefGoogle Scholar
  9. 9.
    Shin YJ, Doumerc JP, Dordor P, Delmas C, Pouchard M, Hagenmuller P (1993) J Solid State Chem 107:303CrossRefGoogle Scholar
  10. 10.
    Doumerc JP, Trari M, Töpfer J, Fournès L, Grenier JC, Pouchard M, Hagenmuller P (1994) Eur J Solid State Chem 31:705Google Scholar
  11. 11.
    Stanley KJ (1972) Oxide magnetic materials. Clarendon, OxfordGoogle Scholar
  12. 12.
    Dordor P, Marquestaut E, Villeneuve G (1980) Rev Phys Appl 15:1607CrossRefGoogle Scholar
  13. 13.
    Saadi S, Bouguelia A, Trari M (2006) Solar Energy 80:272CrossRefGoogle Scholar
  14. 14.
    Trari M, Töpfer J, Dordor P, Grenier JC, Pouchard M, Doumerc JP (2005) J Solid State Chem 178:2751CrossRefGoogle Scholar
  15. 15.
    Töpfer J, Trari M, Gravereau P, Chaminade JP, Doumerc JP (1995) Z Krist 210:184CrossRefGoogle Scholar
  16. 16.
    Shannon RD (1976) Acta Cryst A 32:751CrossRefGoogle Scholar
  17. 17.
    Koriche N, Bouguelia A, Trari M (2007) J Mater Sci, doi:10.1007/s10853-006-0741-0CrossRefGoogle Scholar
  18. 18.
    Nyquist RA, Kagel RO (1971) Infrared spectra of inorganic compounds. Academic Press, New YorkCrossRefGoogle Scholar
  19. 19.
    Trari M (1994) Ph.D Thesis, Bordeaux UniversityGoogle Scholar
  20. 20.
    Kittel C (1988) Physique de l’Etat Solide, Dunod UniversitéGoogle Scholar
  21. 21.
    Lide DR (Editor in Chief) (1997–1998) Handbook of chemistry and physics, 78th edn. CRS pressGoogle Scholar
  22. 22.
    Rogers DB, Shannon RD, Prewitt CT, Gillson JL (1971) Inorg Chem 10:723CrossRefGoogle Scholar
  23. 23.
    Trestmann-Matts V, Dorris SE, Kumarakrishnan S, Mason TO (1983) Am J Ceram Soc 66:829CrossRefGoogle Scholar
  24. 24.
    Doumerc JP (1994) J Solid State Chem 110:419CrossRefGoogle Scholar
  25. 25.
    Marsh DB, Parris PE (1996) Phys Rev B 54(11):7720CrossRefGoogle Scholar
  26. 26.
    Butler MA, Ginley DS (1980) J Electrochem Soc 127:1273CrossRefGoogle Scholar
  27. 27.
    Alexéev V (1976) Analyse qualitative, ed. MirGoogle Scholar
  28. 28.
    Benko FA, Koffyberg FP (1987) J Phys Chem Solids 48:431CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Yassine Bessekhouad
    • 1
  • Yamina Gabes
    • 1
  • Aissa Bouguelia
    • 1
  • Mohamed Trari
    • 1
    Email author
  1. 1.Laboratoire de Stockage et de Valorisation des Energies RenouvelablesUSTHBAlgiersAlgeria

Personalised recommendations