Advertisement

Journal of Materials Science

, Volume 42, Issue 18, pp 7964–7971 | Cite as

Role of metal additives in mechanochemical phase transformation of zirconia

  • Garegin R. KaragedovEmail author
  • Svetlana S. Shatskaya
  • Nikolai Z. Lyakhov
Article

Abstract

Reasons for a phase transition in zirconia subjected to intensive mechanical treatment in planetary mill have been considered. If steel balls and vials are used for milling the comminution is accompanied by oxidation of wear metal particles and successive mechanochemical reaction with ZrO2. Aluminum has been shown to behave similarly and, being deliberately added to zirconia powder, to form solid solutions. Foreign metal cations introduced into the lattice stabilize a modification with higher crystal symmetry thus increasing the threshold size above which the monoclinic modification is stable. An increase of surface energy contribution to the Gibbs’ energy of zirconia plays an important role in phase transformation at the initial stages of mechanical treatment, while henceforth thermodynamic stability is more and more determined by the stabilizing effect of the impurity cations. Under the conditions that rule out contamination of ZrO2 with wear material or other metal additives, dynamic equilibrium sets in between the direct transition to the tetragonal phase and the reverse transition to the monoclinic form.

Keywords

Zirconia Mechanochemical Synthesis Cooling Liquid Ferric Cation Zirconia Particle 

References

  1. 1.
    Avvakumov EG (1986) Mechanokhimicheskie metodi aktivatzii khimicheskikh prozessov. Nauka, NovosibirskGoogle Scholar
  2. 2.
    Heinicke G (1984) Tribochemistry. Akademie-Verlag, BerlinGoogle Scholar
  3. 3.
    Suryanarayana C (2001) Prog Mater Sci 46:1CrossRefGoogle Scholar
  4. 4.
    Gaffet E, Bernard F, Niepce J-C, Charlot F, Gras C, Le Caer G, Guichard J-L, Delcroix P, Mocellin A, Tillement O (1999) J Mater Chem 9:305CrossRefGoogle Scholar
  5. 5.
    Boldyrev VV, Tkacova K (2000) J Mater Synth Proc 8:121CrossRefGoogle Scholar
  6. 6.
    Bayley JE, Lewis D, Librant ZM, Porter LJ (1972) Trans J Brit Ceram Soc 71:25Google Scholar
  7. 7.
    Qi M, Fecht HJ (1998) Mater Sci Forum 269–272:187CrossRefGoogle Scholar
  8. 8.
    Jiang JZ, Poulsen FW, Morup S (1999) J Mater Res 14:1343CrossRefGoogle Scholar
  9. 9.
    Kuznetsov PN, Kuznetsova LI, Zhizhaev AM (2002) Chem Sustain Dev 1–2:89Google Scholar
  10. 10.
    Karagedov GR, Ryzhikov EA, Shatskaya SS (2002) Chem Sustain Dev 1–2:47Google Scholar
  11. 11.
    Stubicar N, Bermanec V, Stubicar M, Popovic D, Kaysser WA (2004) J Alloys Compd 379:216CrossRefGoogle Scholar
  12. 12.
    Garvie RC (1965) J Phys Chem 69:1238CrossRefGoogle Scholar
  13. 13.
    Suresh A, Mayo MJ, Porter WD, Rawn CJ (2003) J Am Ceram Soc 86:360CrossRefGoogle Scholar
  14. 14.
    Wu N-L, Wu T-F, Rusakova IA (2001) J Mater Res 16:666CrossRefGoogle Scholar
  15. 15.
    Mayo MJ, Suresh A, Porter WD (2003) Rev Adv Mater Sci 5:100Google Scholar
  16. 16.
    Garvie RC (1978) J Phys Chem 82:218CrossRefGoogle Scholar
  17. 17.
    Chraska T, King AH, Berndt CC (2000) Mater Sci Eng A286:169CrossRefGoogle Scholar
  18. 18.
    Durado E, Bouvier P, Lucazeau G (2000) J Solid State Chem 149:399CrossRefGoogle Scholar
  19. 19.
    Pitcher MW, Ushakov SV, Navrotsky A (2005) J Am Ceram Soc 88(1):160CrossRefGoogle Scholar
  20. 20.
    Karagedov GR, Lyakhov NZ (2003) KONA Powder Part 21:76CrossRefGoogle Scholar
  21. 21.
    Karagedov GR, Lyakhov NZ (1999) NanoStruct Mater 11:559CrossRefGoogle Scholar
  22. 22.
    Cao W, Tan OK, Zhu W, Jiang B (2000) J Solid State Chem 155:320CrossRefGoogle Scholar
  23. 23.
    Kuznetsov PN, Kuznetsova LI, Zhyzhaev AM, Pashkov GL, Boldyrev VV (2003) Chem Sustain Dev 4:611Google Scholar
  24. 24.
    Kim D-J (1989) J Am Ceram Soc 72:1415CrossRefGoogle Scholar
  25. 25.
    Michel D, Faudot F, Gaffet E, Mazerolles L (1993) J Am Ceram Soc 76:2884CrossRefGoogle Scholar
  26. 26.
    Collins DE, Kirk A, Bowman RK (1995) J Eur Ceram Soc 15:1119CrossRefGoogle Scholar
  27. 27.
    Lee J, Li H, Lee WY (2003) J Am Ceram Soc 86:2031CrossRefGoogle Scholar
  28. 28.
    Zhu WZ, Yan M (1997) J Mater Sci Lett 16:1540CrossRefGoogle Scholar
  29. 29.
    Balmer ML, Lange FF, Levi CG (1994) J Am Ceram Soc 77:2069CrossRefGoogle Scholar
  30. 30.
    Ishida K, Hirota K, Yamaguchi O, Kume H, Inamura S, Miyamoto H (1994) J Am Ceram Soc 77:1391CrossRefGoogle Scholar
  31. 31.
    Moreau S, Gervas M, Douy A (1997) Solid State Ionics 101–103:625Google Scholar
  32. 32.
    Srdic VV, Winterer M, Miehe G, Hahn H (1999) Nanostruct Mater 12:95CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Garegin R. Karagedov
    • 1
  • Svetlana S. Shatskaya
    • 1
  • Nikolai Z. Lyakhov
    • 1
  1. 1.Institute of Solid State Chemistry and Mechanochemistry, Siberian BranchRussian Academy of SciencesNovosibirskRussia

Personalised recommendations