Advertisement

Journal of Materials Science

, Volume 42, Issue 19, pp 8306–8310 | Cite as

Structural, dielectric and electrical properties of Te modified barium stannates using impedance analysis

  • Ashok KumarEmail author
  • R. N. P. Choudhary
  • B. P. Singh
Article

Abstract

Te modified barium stannates BaSn1−xTexO3 (x = 0–15 mol%) provides an interesting result (i.e., ferroelectric phase transition) above room temperature. As we increase concentration of Te, dielectric anomalies (dielectric constant and loss) increases but Curie temperature (Tc) shifted towards lower temperature side. Impedance analysis indicates the existence of both grain and grain boundary resistance nears the Curie temperature (∼225 °C–275 °C). At elevated temperature materials show a typically semiconducting nature (i.e., Negative temperature coefficient of resistance (NTCR)).

Keywords

Curie Temperature TeO2 Negative Temperature Coefficient Ferroelectric Phase Transition Stannate 

References

  1. 1.
    Claessen R, Smith MG, Goodenough JB (1993) Phys Rev B 47(4):1788CrossRefGoogle Scholar
  2. 2.
    Lu W, Jiang S, Zhou D, Gong S (2000) Sensor Actuator A: Phys 80(1):35CrossRefGoogle Scholar
  3. 3.
    Cava RJ, Gammel P, Batlog B, Krajerki JJ, Peck WF Jr., Rupp LW Jr., Felder R, Van Dover RB (1990) Phys Rev B 42(7):4815CrossRefGoogle Scholar
  4. 4.
    Elermon Y (1993) Turkish J Phys 17(7):465Google Scholar
  5. 5.
    Parida SC, Banerjee A, Das S, Prasad R, Singh Z, Venugopal V (2002) J Chem Thermody 34:527CrossRefGoogle Scholar
  6. 6.
    Udawatte CP, Kakihana M, Yoshimura M (2000) Solid State Ionics 128:217CrossRefGoogle Scholar
  7. 7.
    Raevskii IP, Prokopalo OI, Kolesnikove SG (1983) Rostov-on-Don 53:1175Google Scholar
  8. 8.
    Jayaraman V, Mangamma G, Gnasekaram T, Periaswami G (1996) Solid Solid State Ionics 86:1111CrossRefGoogle Scholar
  9. 9.
    Rai RS, Sharama S, Choudhary RNP (2002) Ferroelectric 275:11CrossRefGoogle Scholar
  10. 10.
    Sharma S, Choudhary RNP (1999) J Electroceram 4:443CrossRefGoogle Scholar
  11. 11.
    Rai R, Sharama S, Choudhary RNP (2002) J Mater Sci Lett 21:297CrossRefGoogle Scholar
  12. 12.
    Singh NK, Choudhary RNP (2000) Ferroelectrics 242(1–4):89CrossRefGoogle Scholar
  13. 13.
    Young LM (1979) J Mater Sci 14:1579CrossRefGoogle Scholar
  14. 14.
    Yamada T, Iwasaki H (1979) J Appl Phys (44):1579Google Scholar
  15. 15.
    Tu CS, Siny IG, Schmidt VH (1994) Phys Rev B 49:11550CrossRefGoogle Scholar
  16. 16.
    Lee KS (1996) J Phys Chem Solids 57:333CrossRefGoogle Scholar
  17. 17.
    Ortiz E, Vargas RA, Mellander BE (1998) J Phys Chem Solids 59:305CrossRefGoogle Scholar
  18. 18.
    Shimizu F, Takashige M, Sawada S, Yamaguchi T (1993) J Phys Soc Jpn 62:2964CrossRefGoogle Scholar
  19. 19.
    Luiz JM, Matos JR, Giolito I, Ionashiro M (1995) Thermochimica Acta 254:209CrossRefGoogle Scholar
  20. 20.
    POUWMOLT An Interactive Powder Diffraction Data Interpretation and Indexing ProgramVersion 2.1, E.Wu, School of Physical Sciences, Flinder University of South Australia, Bradford Park, SA 5042, AustraliaGoogle Scholar
  21. 21.
    Goto Y (1980) J Phys Soc Jpn 50:538CrossRefGoogle Scholar
  22. 22.
    Shockley W, Read WT (1952) Phys Rev 87:239CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Ashok Kumar
    • 1
    Email author
  • R. N. P. Choudhary
    • 2
  • B. P. Singh
    • 3
  1. 1.Department of Metallurgy and Materials EngineeringIndian Institute of TechnologyKharagpurIndia
  2. 2.Department of Physics and MeteorologyIndian Institute of TechnologyKharagpurIndia
  3. 3.Department of PhysicsT. M. Bhagalpur UniversityBhagalpurIndia

Personalised recommendations