Advertisement

Journal of Materials Science

, Volume 42, Issue 15, pp 6279–6286 | Cite as

Photoconductivity of n-type semiconductor nanoparticle-doped poly(N-vinylcarbazole) films

  • Tadahiro Murakata AitaEmail author
  • Kosuke Iha
  • Liu Hui
  • Takeshi Higuchi
  • Shimio Sato
Article

Abstract

TiO2, CdS and ZnS nanoparticles that disperse stably in organic solvents are synthesized. Poly(N-vinylcarbazole) films doped with the n-type semiconductor nanoparticles are prepared with a cast method. The films exhibit a transient photocurrent when irradiated by a light pulse and act such as a diode when AC voltage is applied under continuous illumination. The transient photocurrent response and diode-like properties are significantly different depending on the kind of the nanoparticles and their amounts. The films doped with TiO2 and CdS nanoparticles increase the transient photocurrent at lower doped amounts, which is remarkable for TiO2-doped films. Time of flight analysis of the transient photocurrent shows that mobility of hole in PVK increases with increase in the amount of CdS and TiO2. From the studies on the diode-like properties, the current increase at lower dopant concentration is concluded to be due to increase in the amount of holes by an electron transfer from PVK to the photo-excited nanoparticles. At higher doping with CdS nanoparticles, main charge carrier of the films is found to change from holes to electrons.

Keywords

High Occupied Molecular Orbital Lower Unoccupied Molecular Orbital TiO2 Nanoparticles High Dopant Concentration Transient Photocurrent 

References

  1. 1.
    Wang ZL (2000) Characterization of nanophase materials. Wiley-VCH, New YorkGoogle Scholar
  2. 2.
    Link S, El-Sayed MA (1999) J Phys Chem B 103:4212CrossRefGoogle Scholar
  3. 3.
    Weller H (1993) Angew Chem Int Ed Engl 32:41CrossRefGoogle Scholar
  4. 4.
    Brus L (1986) J Phys Chem 90:2555CrossRefGoogle Scholar
  5. 5.
    Yuan Y, Fendler JH, Cabasso I (1992) Chem Mater 4:312CrossRefGoogle Scholar
  6. 6.
    Schlamp MC, Peng X, Alivisatos AP (1997) J Appl Phys 82:5837CrossRefGoogle Scholar
  7. 7.
    Choudhury KR, Samoc M, Patra A, Prasad PN (2004) J Chem Phys B 108:1556CrossRefGoogle Scholar
  8. 8.
    Carnes JE, Warter PJ Jr (1972) Phy Rev 5:1557CrossRefGoogle Scholar
  9. 9.
    Murakata T, Aita T, Yamamoto R, Yoshida Y, Hinohara M, Ogata T, Stato S (1998) J Chem Eng Jpn 31:21CrossRefGoogle Scholar
  10. 10.
    Vossmeyer T, Katsikas L, Giersig M, Popovic IG, Diesner K, Chemseddine A, Eychmuller A, Weller H (1994) J Phys Chem 98:7665CrossRefGoogle Scholar
  11. 11.
    Fendler JH (1998) Nanoparticles and nanostructured films. -preparation, characterization and applications. Wiley-VCH, New York, p 450CrossRefGoogle Scholar
  12. 12.
    Schein LB, Rosenberg A, Rice SL (1986) J Appl Phys 60:4287CrossRefGoogle Scholar
  13. 13.
    Schiavello M (1997) Heterogeneous photocatalysis. Wiley-VCH, New York, pp 8–113Google Scholar
  14. 14.
    Gill WD (1972) J Appl Phys 43:5033CrossRefGoogle Scholar
  15. 15.
    Pfister G, Griffiths H (1978) Phys Rev 40:659Google Scholar
  16. 16.
    Yamaguchi M, Nagatomo T (2000) Thin Solid Films 363:21CrossRefGoogle Scholar
  17. 17.
    Greenham NC, Peng X, Alivisatos AP (1996) Phys Rev 54:17628CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Tadahiro Murakata Aita
    • 1
    Email author
  • Kosuke Iha
    • 1
  • Liu Hui
    • 1
  • Takeshi Higuchi
    • 1
  • Shimio Sato
    • 1
  1. 1.Department of Materials Science and EngineeringYamagata UniversityYamagataJapan

Personalised recommendations