Advertisement

Journal of Materials Science

, Volume 42, Issue 24, pp 10250–10253 | Cite as

Electrical properties of Ni0.93Co0.02Mn0.05Fe2O4 + BaTiO3 ME composites

  • S. A. Lokare
  • R. S. Devan
  • D. R. Patil
  • Y. D. Kolekar
  • K. K. Patankar
  • B. K. ChouguleEmail author
Article

Abstract

Polycrystalline samples of mixed composites of Ni0.93Co0.02Mn0.05Fe2O4 + BaTiO3 were prepared by conventional double sintering ceramic method. The phase analysis was carried out by using X-ray diffraction technique. Variation of dc resistivity and thermo emf was studied as a function of temperature. AC conductivity (σac) was investigated in the frequency range 100 Hz–1 MHz. The loss tangent (tan δ) measurements conclude that the conduction mechanism in these samples is due to small polaron hopping. The magnetoelectric conversion factor, i.e. dc(ME)H was studied as a function of intensity of magnetic field and the maximum value 407 μV/cm/Oe was observed at a field of 0.8 kOe in a composite with 85% BaTiO3 and 15% Ni0.93Co0.02Mn0.05Fe2O4 phase.

Keywords

Ferrite BaTiO3 Seebeck Coefficient Ferrite Phase Small Polaron 

Notes

Acknowledgement

The authors are thankful to UGC, New Delhi for their financial support under UGC-DRS-II program.

References

  1. 1.
    Lopatin S, Lopatin I, Lisnevskaya I (1994) Ferroelectrics 162:63CrossRefGoogle Scholar
  2. 2.
    Nan C-W (1994) Phys Rev B 50:6082CrossRefGoogle Scholar
  3. 3.
    Van Suchetelene Philips J (1972) Res Rep 27:28Google Scholar
  4. 4.
    Schmid H (1994) Bull Mater Sci 17(7):1411CrossRefGoogle Scholar
  5. 5.
    Suryanarayana SV (1994) Bull Mater Sci 17(7):1259CrossRefGoogle Scholar
  6. 6.
    Kumar MM, Shrinivas A, Suryanarayana SV, Kumar GS, Bhimashankaram T (1998) Bull Mater Sci 21(3):251CrossRefGoogle Scholar
  7. 7.
    Mahajan RP, Patankar KK, Patil AN, Choudhari SC, Ghatage AK, Patil SA (2000) Indian J Eng Mater Sci 7:203Google Scholar
  8. 8.
    Reddy NR, Rajagopal E, Sivakumar KV, Patankar KK, Murthy VRK (2003) J Electro 11:167CrossRefGoogle Scholar
  9. 9.
    Srinivas G, Rasmussen ET (2004) Appl Phys A 78:721CrossRefGoogle Scholar
  10. 10.
    Boomgaard JV, Born RAJ (1978) J Mater Sci 13:1538CrossRefGoogle Scholar
  11. 11.
    Patankar KK, Mathe VL, Mahajan RP, Patil SA, Reddy R, Sivakumar KV (2001) Mater Chem Phys 72:23CrossRefGoogle Scholar
  12. 12.
    Verwey EJW, Heilman EJW (1947) J Chem Phys 15:174CrossRefGoogle Scholar
  13. 13.
    Mahajan RP, Patankar KK, Kothale MB, Patil SA (2000) Bull Mater Sci 23:273CrossRefGoogle Scholar
  14. 14.
    Kadam SL, Patankar KK, Kanamadi CM, Chougule BK (2004) Bull Mater Sci 39:2265Google Scholar
  15. 15.
    Patankar KK, Mathe VL, Patil An, Patil SA, Lotake SD, Kolekar YD, Joshi PB (2001) J Electroceram 6(2):115CrossRefGoogle Scholar
  16. 16.
    Alder D, Feinleib J (1970) Phys Rev B 2:3112CrossRefGoogle Scholar
  17. 17.
    Appel J, Seitz F, Thurnbull D, Ehrenreich H (1968) Solid State Phys 21:193CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • S. A. Lokare
    • 1
  • R. S. Devan
    • 1
  • D. R. Patil
    • 1
  • Y. D. Kolekar
    • 1
  • K. K. Patankar
    • 1
  • B. K. Chougule
    • 1
    Email author
  1. 1.Composite Materials Laboratory, Department of PhysicsShivaji UniversityKolhapurIndia

Personalised recommendations