Advertisement

Journal of Materials Science

, Volume 42, Issue 12, pp 4291–4297 | Cite as

Containerless processing of a lithium disilicate glass

  • K. S. RanasingheEmail author
  • C. S. Ray
  • D. E. Day
  • J. R. Rogers
  • R. W. Hyers
  • T. Rathz
Article

Abstract

Glasses of Li2O · 2SiO2 (LS2), and LS2 doped with 0.001 wt% platinum (LS2 + 0.001 wt% Pt) compositions were melted, cooled and reheated at controlled rates while levitated (containerless) inside an electrostatic levitator (ESL) furnace at the NASA Marshall Space Flight Center. The experiments were conducted in vacuum using spherical, 2.5–3 mm diameter, glass samples. The measured critical cooling rate for glass formation, Rc, for the LS2 and LS2 + 0.001 wt% Pt glasses processed at ESL were 14 ± 2 °C/min and 130 ± 5 °C/min, respectively. The values of Rc for the same LS2 and LS2 + 0.001 wt% Pt glasses processed in a container were 62 ± 3 °C/min and 162 ± 5 °C/min, respectively. The effective activation energy for crystallization, E, for this LS2 glass processed without a container at ESL, was higher than that for an identical glass processed in a container. These results suggest that the glass formation tendency for a containerless LS2 melt is significantly increased compared to an identical melt in contact with a container. The absence of heterogeneous nucleation sites that are inherently present in all melts held in containers is believed to be the reason for the increased glass forming tendency of this containerless melt.

Keywords

Differential Thermal Analysis Glass Sample Glass Formation Effective Activation Energy Critical Cool Rate 

Notes

Acknowledgements

This work was supported by the National Aeronautics and Space Administration (NASA), contract # NAG8–1465. The authors thank Trudy Allen and Glenn Fountain for their technical help in processing the samples at MSFC ESL.

References

  1. 1.
    Maurer RD (1959) J Chem Phys 31(2):444CrossRefGoogle Scholar
  2. 2.
    Gutzow I (1980) Contemp. Phys 21(3):243CrossRefGoogle Scholar
  3. 3.
    Rindone GW (1958) J Non-Cryst Solids 41(1):41Google Scholar
  4. 4.
    Cronin D, Pye LD (1986) Non-Cryst Solids 84:196CrossRefGoogle Scholar
  5. 5.
    Lakshmi Narayan K, Kelton KF, Ray CS (1996) J. Non-Cryst Solids 195:148CrossRefGoogle Scholar
  6. 6.
    Deubner J, Brukner R (1993) J Non-Cryst Solids 163:1CrossRefGoogle Scholar
  7. 7.
    Gutzow I, Schmelzer J (1995) The vitreous state: thermodynamics, structure, rheology, and crystallization. Springer, Berlin, p 217Google Scholar
  8. 8.
    Uhlmann DR, Yinnon H (1983) In: Uhlmann DR, Kreidl NJ (eds) Glass science and technology, vol 1. Glass forming systems. Academic Press, New York, NY, chapter 1Google Scholar
  9. 9.
    Scherer GW (1991) In: Cahn RW, Haasen P, Kramer EJ (eds) Materials science and technology, vol 9. Glass and amorphous materials. VCH Publications, New York, NY, chapter 3Google Scholar
  10. 10.
    Ray CS, Day DE (1984) J Am Ceram Soc 67:806CrossRefGoogle Scholar
  11. 11.
    Rogers JR, Hyers RW, Rathz T, Savage L, Robinson MB (2001) In: El-Genk MS (ed) Proceedings of the space technology and applications international forum 2001, Albuquerque, Nm, AIP Conf. Proc., vol 552, p 332Google Scholar
  12. 12.
    Rogers JR, Robinson MB, Hyers RW, Savage L, Rathz T (2000) In: Robert A. Schiffman (ed) 12th international proceedings of the experimental methods for microgravity materials science, ASM InternationalGoogle Scholar
  13. 13.
    Rhim WK, Chung SK, Barber D, Man KF, Gutt G, Rulison AJ, Spjut RE (1993) Rev Sci Instrum 64:2961CrossRefGoogle Scholar
  14. 14.
    Rulison AJ, Watkins JL, Zambrano B (1997) Rev Sci Instrum 68:2856CrossRefGoogle Scholar
  15. 15.
    Hays CC, Schroers J, Johnson WL, Rathz TJ, Hyers RW, Rogers JR, Robinson MB (2001) Appl Phys Lett 79:1605CrossRefGoogle Scholar
  16. 16.
    Kelton KF, Lee GW, Gangopadhayay AK, Hyers RW, Rathz TJ, Rogers JR, Robinson MB, Robinson DS (2003) Phys Rev Lett 90:195CrossRefGoogle Scholar
  17. 17.
    Yu J, Koshikawa N, Arai Y, Yoda S, Saitou H (2001) J Cryst Growth 231:568CrossRefGoogle Scholar
  18. 18.
    Paradis PF, Ishikawa T, Yu J, Yoda S (2002) Proceedings of 40th AIAA aerospace sciences meeting and exhibit, Reno, Nv, USA, 14–17 January 2002Google Scholar
  19. 19.
    Zanotto ED, James PF (1990) J Non-Cryst Solids 124:344CrossRefGoogle Scholar
  20. 20.
    Potpov OV, Fokin VM, Filipovich VN, Kalinina AM (1998) Glass Phys Chem 24(4):337Google Scholar
  21. 21.
    James PF, Scott B, Armstrong P (1978) Phys Chem Glasses 19(2):24Google Scholar
  22. 22.
    Fokin VM, Potpov OV, Chinaglia CR, Zanotto ED (1999) ibid. 258:180Google Scholar
  23. 23.
    Strand Z, Douglas RW (1973) Phys Chem Glass 14(2):33Google Scholar
  24. 24.
    Gonzalez-Oliver JR, Johnson PS, James PF (1979) J Mater Sci 14:1159CrossRefGoogle Scholar
  25. 25.
    Ray CS, Fang X, Day DE (2000) J Am Ceram Soc 83:865CrossRefGoogle Scholar
  26. 26.
    Barta C, Stourac L, Triska A, Kocka J, Zavetova M (1980) J Non-Cryst Solids 35:1239CrossRefGoogle Scholar
  27. 27.
    Ray CS, Day DE (1987) In: Doremus RH, Nordine PC (eds) Mat. Res. Symp. Proc., vol 87, p 239Google Scholar
  28. 28.
    Frischat GH (1995) J Non-Cryst Solids 183:92CrossRefGoogle Scholar
  29. 29.
    Ray CS, Day DE (2003) J Thermophys Heat Transfer 17:174CrossRefGoogle Scholar
  30. 30.
    Barandiaran JM, Colmenro J (1981) J Non-Cryst Solids 46:277CrossRefGoogle Scholar
  31. 31.
    Huang W, Ray CS, Day DE (1986) J. Non-Cryst Solids 86:204CrossRefGoogle Scholar
  32. 32.
    Kissinger HE (1956) J Res Natl Bur Stand (US) 57:217CrossRefGoogle Scholar
  33. 33.
    Ray CS, Huang W, Day DE (1991) Am Ceram Soc 74:60CrossRefGoogle Scholar
  34. 34.
    Bansal NP, Doremus RH (1986) In: Handbook of glass properties. Academic Press, New York, NYCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • K. S. Ranasinghe
    • 1
    Email author
  • C. S. Ray
    • 2
  • D. E. Day
    • 3
  • J. R. Rogers
    • 2
  • R. W. Hyers
    • 4
  • T. Rathz
    • 5
  1. 1.Department of Physics and GeologyNorthern Kentucky UniversityHighland HeightsUSA
  2. 2.Marshall Space Flight CenterNational Aeronautics and Space AdministrationHuntsvilleUSA
  3. 3.Graduate Center for Materials ResearchUniversity of Missouri-RollaRollaUSA
  4. 4.Department of Mechanical and Industrial EngineeringUniversity of MassachusettsAmherstUSA
  5. 5.University of Alabama in HuntsvilleHuntsvilleUSA

Personalised recommendations