Synthesis of EVA-g-MAH and its compatibilization effect to PA11/PVC blends

  • Tao WangEmail author
  • Dan Liu
  • Chuanxi Xiong


Ethylene vinyl acetate (EVA) was grafted with maleic anhydride (MAH) to get terpolymer of EVA-g-MAH, and then was employed as a reactive compatibilizer to develop PA11/PVC blends. Mechanical properties indicate the critical EVA-g-MAH content at about 15 wt% and the blending of PVC with PA11 reserves PA11s high performance even at high PVC incorporation. The glass transition temperature change by DMA proves the compatibilization effect. SEM micrographs reveal that PA11/PVC blends have a two-phase structure. Particularly, PA11 is the continuous phase and PVC is the dispersed phase. PVC disperses uniformly in PA11 phase in the presence of EVA-g-MAH, and the increasing PA11 content leads to further decrease of PVC domain size. PA11/PVC blends are compatibilized by in situ reaction between PA11 and EVA-g-MAH, as well as intermolecular specific interactions between EVA-g-MAH and PVC.


Dynamic Mechanical Analysis Compatibilization Effect Maleic Anhydride Vinyl Acetate Vinyl Acetate 


  1. 1.
    Sung YT, Kum CK, Lee HS, Kim JS, Yoon HG, Kim WN (2005) Polymer 46:11844CrossRefGoogle Scholar
  2. 2.
    Marcilla A, Gomez A, Reyes-Labarta JA (2001) Polymer 42:8103CrossRefGoogle Scholar
  3. 3.
    Doak KW (1986) In: Mark HF, Bikales NM, Overberger CG, Menges G (eds) Encyclopedia of polymer science and engineering, vol 6. Wiley, New York, p 383Google Scholar
  4. 4.
    Soares BG, Alves FF, Oliveira MG, Moreira ACF, Garcia FG, Lopes MFS (2001) Eur Polym J 37:1577CrossRefGoogle Scholar
  5. 5.
    Kim SJ, Shin BS, Hong JL, Cho WJ, Ha CS (2001) Polymer 42:4073CrossRefGoogle Scholar
  6. 6.
    Cartasegna S (1986) Rubber Chem Technol 49:722CrossRefGoogle Scholar
  7. 7.
    Steinkamp DG, Grail TJ (1975) U.S. Patent 3,862,265 Google Scholar
  8. 8.
    Gaylord NG (1985) U.S. Patent 4,506,056 Google Scholar
  9. 9.
    Gaylord NG, Mehta R (1988) J Polym Sci Part A: Polym Chem 26:1189CrossRefGoogle Scholar
  10. 10.
    Ikkala OT, Holsti-Miettinen RM, Seppalla J (1993) J Appl Polym Sci 49:1165CrossRefGoogle Scholar
  11. 11.
    Moon HS, Ryoo BK, Park JK (1994) J Polym Sci Polym Phys 32:1427CrossRefGoogle Scholar
  12. 12.
    Arup RB, Anup KG, Shok MA (2001) Polymer 42:9143CrossRefGoogle Scholar
  13. 13.
    Chris S, Chris M (1994) J Polym Sci Polym Phys 32:205CrossRefGoogle Scholar
  14. 14.
    Deimedea VA, Fragoua KV, Koulouri EG, Kallitsis JK, Voyiatzis GA (2000) Polymer 41:9095CrossRefGoogle Scholar
  15. 15.
    Dai KH, Kramer EJ, Frechetj MJ, Wilson PG, Moore RS, Long TE (1994) Macromolecules 27:5187CrossRefGoogle Scholar
  16. 16.
    Auschra C, Stadler R, Voigt-Martin IG (1993) Polymer 34:2081CrossRefGoogle Scholar
  17. 17.
    Auschra C, Stadler R, Voigt-Martin IG (1993) Polymer 34:2094CrossRefGoogle Scholar
  18. 18.
    Gsell TC, Pearce EM, Kwei TK (1991) Polymer 32:1663CrossRefGoogle Scholar
  19. 19.
    Liu SY, Zhang GZ, Jiang M (1999) Polymer 40:5449CrossRefGoogle Scholar
  20. 20.
    Zhang GZ, Liu SY, Zhao HY, Jiang M (1999) Mater Sci Eng C 10:155CrossRefGoogle Scholar
  21. 21.
    Liu SY, Zhu H, Jiang M, Wu C (2000) Langmuir 16:3712CrossRefGoogle Scholar
  22. 22.
    Jiang M, Li M, Xiang ML, Zhou H (1999) Adv Polym Sci 146:121CrossRefGoogle Scholar
  23. 23.
    Liu SY, Pan QM, Xiej W, Jiang M (2000) Polymer 41:6919CrossRefGoogle Scholar
  24. 24.
    Lu X, Weiss RA (1991) Macromolecules 24:4381CrossRefGoogle Scholar
  25. 25.
    Lu X, Weiss RA (1992) Macromolecules 25:6185CrossRefGoogle Scholar
  26. 26.
    Charoensirisomboon P, Saito H, Inoue T, Weber M, Koch E (1998) Macromolecules 31:4963CrossRefGoogle Scholar
  27. 27.
    Zakrzewski GA (1973) Polymer 14:347CrossRefGoogle Scholar
  28. 28.
    Schurer JW, Boer A, Chall AG (1975) Polymer 16:201CrossRefGoogle Scholar
  29. 29.
    Hickman JJ, Ikeda RM (1973) J Polym Sci: Polym Phys Ed 11:1173Google Scholar
  30. 30.
    Koleske JV, Lundberg RD (1969) J Polym Sci, Part A-2 7:795CrossRefGoogle Scholar
  31. 31.
    Olabisi O, Robeson LM, Shaw MT (1979) Polymer–polymer miscibility. Academic Press, IncCrossRefGoogle Scholar
  32. 32.
    Robeson LMJ (1978) Polym Sci: Polym Lett 16:261Google Scholar
  33. 33.
    Lian YX, Zhang Y, Peng ZL, Zhang XF, Fan RL, Zhang YX (2001) J Appl Polym Sci 80:2823CrossRefGoogle Scholar
  34. 34.
    Soares BG, Colombaretti RSC (1999) J Appl Polym Sci 72:1799CrossRefGoogle Scholar
  35. 35.
    Wang SJ, Yu JG, Yu JL (2005) Polym Degrad Stab 87:395CrossRefGoogle Scholar
  36. 36.
    Deng JP, Yang WT (2005) Eur Polym J 41:2685CrossRefGoogle Scholar
  37. 37.
    Grigoryeva OP, Karger-Kocsis J (2000) Eur Polym J 36:1419CrossRefGoogle Scholar
  38. 38.
    Kim SJ, Shina BS, Honga JL, Chob WJ, Ha CS (2001) Polymer 42:4073CrossRefGoogle Scholar
  39. 39.
    De Roover B, Sclavons M, Carlier V, Devaux J, Legras R, Montaz A (1995) J Appl Polym Sci 33:829CrossRefGoogle Scholar
  40. 40.
    Gaylord NG, Mehta M, Mehta R (1995) Antec. 1635Google Scholar
  41. 41.
    Zhang QX, Mo ZS (2001) Polym Bull 6:27Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  1. 1.Department of PhysicsUniversity of SurreyGuildford, SurreyUK
  2. 2.School of Materials Science and EngineeringWuhan University of TechnologyWuhanP.R. China

Personalised recommendations