Advertisement

Journal of Materials Science

, Volume 42, Issue 15, pp 6382–6387 | Cite as

MD simulations on the melting and compression of C, SiC and Si nanotubes

  • Haijun ShenEmail author
Article

Abstract

By the Tersoff potential based molecular dynamics (MD) method, the melting and axial compression of the (5,5) C, SiC, and Si nanotubes are simulated, and their molecular configurations, atomic radial distribution functions (RDF) and energy changes during heating-up, as well as their compressive force–strain curves, are obtained. According to the computed results, the differences of the melting and compressive mechanical properties of the three nanotubes are discussed. It is found that the melting C, SiC, and Si nanotubes have netlike, loose spherical and compact spherical configurations respectively, and that the C nanotube has the highest melting point, specific heat, melting heat and load support capability, whereas the Si nanotube has the lowest ones.

Keywords

Radial Distribution Function Failure Strain Melting Heat Melting Property Radial Distribution Function 

Notes

Acknowledgement

The paper is supported by the NUAA Innovation Fund.

References

  1. 1.
    Iijima SH (1991) Nature 354(6348):56CrossRefGoogle Scholar
  2. 2.
    Dai HJ, Hafner JH, Rinzler AG, Colbert DT, Smalley RE (1996) Nature 384(6605):147CrossRefGoogle Scholar
  3. 3.
    Shen H, Mu X (2005) J Mater Sci Eng 23(3):321Google Scholar
  4. 4.
    Dmitrii FP, Federico R (2006) Small 2(1):22CrossRefGoogle Scholar
  5. 5.
    Seifert G, Köhler Th, Urbassek HM, Hernández E, Frauenheim Th (2001) Phys Rev B 63:193409CrossRefGoogle Scholar
  6. 6.
    Tang YH, Pei LZ, Chen YW, Guo C (2005) Phys Rev Lett 95:116102CrossRefGoogle Scholar
  7. 7.
    Durgun E, Tongay S, Ciraci S (2005) Phys Rev B 72:75420CrossRefGoogle Scholar
  8. 8.
    Durgun E, Tongay S, Ciraci S (2005) Turk J Phys 29:307Google Scholar
  9. 9.
    Jaeil B, Zeng XC, Hideki T, Zeng JY (2004) Chemistry 101(9):2664Google Scholar
  10. 10.
    Shen H (2004) Comput Appl Chem 21(3):485Google Scholar
  11. 11.
    Young-Kyun K, Savas B, David T (2004) Phys Rev Lett 92:15901CrossRefGoogle Scholar
  12. 12.
    Yeau-Ren J, Ping-Chi T (2005) J Chem Phys 122:224713CrossRefGoogle Scholar
  13. 13.
    Madhu M, Ernst R (2004) Phys Rev B 69:115322CrossRefGoogle Scholar
  14. 14.
    Fletcher R, Reeves C (1964) Comput J 7:149CrossRefGoogle Scholar
  15. 15.
    Tersoff J (1998) Phys Rev Lett 56(6):632CrossRefGoogle Scholar
  16. 16.
    Tersoff J (1988) Phys Rev Lett 61:2879CrossRefGoogle Scholar
  17. 17.
    Sekkai W, Zaoui A (2002) New J Phys 4:91CrossRefGoogle Scholar
  18. 18.
    Tersoff J (1989) Phys Rev B 39(8):5566CrossRefGoogle Scholar
  19. 19.
    Leach AR (1996) Molecular modeling. Addison Wesley Longman Limited, pp 316–317Google Scholar
  20. 20.
    Seong GK, David T (1999) Phys Rev Lett 72:2418Google Scholar
  21. 21.
    Nose S (1984) J Chem Phys 81(1):511CrossRefGoogle Scholar
  22. 22.
    Shen H (2006) Chinese J Mater Res 20(1):93Google Scholar
  23. 23.
    Wang L, Hu H (2004) Acta Mech Solida Sinica 25(3):233Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.School of Aeronautics and AstronauticsNanjing University of Aeronautics & AstronauticsNanjingChina

Personalised recommendations