Journal of Materials Science

, Volume 42, Issue 15, pp 6433–6438 | Cite as

Effects of particle size on the thermal expansion behavior of SiCp/Al composites

  • YiWu YanEmail author
  • Lin Geng


The coefficients of thermal expansion (CTEs) of 20 vol% SiCp/Al composites fabricated by powder metallurgy process were measured and examined from room temperature to 450 °C. The SiC particles are in three nominal sizes 5, 20 and 56μm. The CTEs of the SiCp/Al composites were shown to be apparently dependent on the particle size. That the larger particle size, the higher CTEs of the composites, is thought to be due to the difference in original thermal residual stresses and matrix plasticity during thermal loading. At low temperature, the experimental CTEs show substantial deviation from the prediction of the elastic analysis derived by Kerner and rule of mixture (ROM), while the Kerner’s model agrees relatively well at high temperatures for the composite with the larger particle size.


Residual Stress Thermal Strain Particle Size Effect Thermal Expansion Behavior Powder Metallurgy Technique 


  1. 1.
    Turner PS (1946) J Res Nat Bureau Stand 37:239CrossRefGoogle Scholar
  2. 2.
    Kerner EH (1956) Proc Phys Soc 69 B:808CrossRefGoogle Scholar
  3. 3.
    Eshelby JD (1957) Proc R Soc 241A:376Google Scholar
  4. 4.
    Lemieux S, Elomari S, Nemes J, Skibo MD (1998) J Mater Sci 33:4381, DOI: 10.1023/A:1004437032224CrossRefGoogle Scholar
  5. 5.
    Shen Y-L, Needleman A, Suresh S (1998) Mater Sci Eng 252A:269CrossRefGoogle Scholar
  6. 6.
    Vogelsang M, Arsenault RJ, Fisher RM (1986) Metall Trans A 17A:379CrossRefGoogle Scholar
  7. 7.
    Arsenault RJ, Shi N (1986) Mater Sci Eng 81:175CrossRefGoogle Scholar
  8. 8.
    Kim CT, Lee JK, Plichta MR (1990) Metall Trans 21A:673CrossRefGoogle Scholar
  9. 9.
    Xu ZR, Chawla KK, Mitra R, Rine ME (1994) Scripta Metall Mater 31:1525CrossRefGoogle Scholar
  10. 10.
    Elomari S, Boukhili R, Marchi S, Mortensen A, Lloyd DJ (1997) J Mater Sci 32:2131, DOI: 10.1023/A:1018535108269CrossRefGoogle Scholar
  11. 11.
    Ma ZY, Bi J, Lu YX et al (1993) In: Miravete A (ed) Proceedings of the ninth international conference on composite materials ICCM/9. vol 1. University of Zaragoza, Madrid, Spain, p 448Google Scholar
  12. 12.
    Arpón R, Molina JM, Saravanan RA, Gacía-Cordovilla C, Louis E, Narciso J (2003) Acta Mater 51:3145CrossRefGoogle Scholar
  13. 13.
    Kirl S, Hoffman M, Bowman K, Wiederhorn S, Rödel J (1998) Acta Mater 46:2493CrossRefGoogle Scholar
  14. 14.
    Hill R (1950) The mathematical theory of plasticity. Clarendon Press, OxfordGoogle Scholar
  15. 15.
    Taya M, Mori T (1987) In: Bui HD, Nguyen DS (eds) Thermomechanical couplings in solids. Elsevier Science, IUTAM, Noth-Holland, pp 147–162Google Scholar
  16. 16.
    Nakamura T, Suresh S (1993) Acta Metall Mater 41:1665CrossRefGoogle Scholar
  17. 17.
    Shen Y-L, Needleman A, Suresh S (1994) Metall Mater Trans 25A:839CrossRefGoogle Scholar
  18. 18.
    Olsson M, Giannakopoulos AE, Suresh S (1995) J Mech Phys Solids 43:1639CrossRefGoogle Scholar
  19. 19.
    Brooksbank D, Andrews KW (1972) J Iron Steel Inst 249Google Scholar
  20. 20.
    Kim BG, Dong SL, Park SD (2001) Mater Chem Phys 72:42CrossRefGoogle Scholar
  21. 21.
    Chang SY, Lin SJ, Flemings MC (2000) Metall Trans 31A:291CrossRefGoogle Scholar
  22. 22.
    Isaacs JA, Mortensen A (1992) Metall Trans 23A:1207CrossRefGoogle Scholar
  23. 23.
    Gao H, Huang Y (2001) Int J Solids Struct 38:2615CrossRefGoogle Scholar
  24. 24.
    Arsenlis A, Parks DM (1999) Acta Mater 47:1597CrossRefGoogle Scholar
  25. 25.
    Elomari S, Skibo MD, Sundarrajan A, Richards H (1998) Comp Sci Tech 58:369CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringHarbin Institute of TechnologyHarbinP.R. China

Personalised recommendations