Journal of Materials Science

, Volume 42, Issue 24, pp 10254–10274 | Cite as

Modelling of effects of ultrastructural morphology on the hygroelastic properties of wood fibres

  • R. Cristian NeaguEmail author
  • E. Kristofer Gamstedt


Wood fibres constitute the structural framework of e.g. wood, paper, board and composites, where stiffness and dimensional stability are of importance. An analytical modelling approach has been used for prediction of hygroelastic response, and assessment of the stresses in thick-walled cylinder models of wood fibres. A wood fibre was idealised as a multilayered hollow cylinder made of orthotropic material with helical orientation. The hygroelastic response of the layered assembly due to axisymmetric loading and moisture content changes was obtained by solving the corresponding boundary value problem of elasticity. A simple solution scheme based on the state space approach and the transfer matrix method was employed. This was combined with an analytical ultrastructural homogenisation method, used to link hygroelastic properties of constituent wood polymers to properties of each layer. Predicted hygroelastic response captured experimentally measured behaviour. Fibres that were constrained not to twist showed a stiffer response than fibres allowed twisting under uniaxial loading. It was also shown that the ultrastructure, i.e. the microfibril angle, will control the hygroexpansion in the same way as it controls the compliance of the cell wall. Qualitative failure trends comparable with experimental observations could be established with stress analysis and a simple plane-stress failure criterion.


Wood Fibre Cellulose Microfibril Pulp Fibre Cell Wall Layer State Space Approach 



Financial support from the Wood Ultrastructure Research Centre (WURC) and the research cluster “New Fibres for New Materials” at STFI-Packforsk AB the is gratefully acknowledged.


  1. 1.
    Neagu RC, Gamstedt EK, Berthold F (2006) J Compos Mater 40:663Google Scholar
  2. 2.
    Tarn JQ, Wang YM (2001) Int J Solids Struct 38:9053Google Scholar
  3. 3.
    Tarn J-Q (2002) Int J Solids Struct 39:5143Google Scholar
  4. 4.
    Tarn JQ (2002) Int J Solids Struct 39:5157Google Scholar
  5. 5.
    Jolicoeur C, Cardou A (1994) J Eng Mech-ASCE 120:2556Google Scholar
  6. 6.
    Tang RC (1972) Wood Fiber Sci 3:210Google Scholar
  7. 7.
    Gillis PP, Mark RE (1973) Cell Chem Technol 7:209Google Scholar
  8. 8.
    Davies GC, Bruce DM (1997) J Mater Sci 32:5424Google Scholar
  9. 9.
    Sutcu M (1992) Int J Solids Struct 29:197Google Scholar
  10. 10.
    Hill R (1965) J Mech Phys Solids 13:189Google Scholar
  11. 11.
    Gillis PP (1970) Fibre Sci Technol 2:193Google Scholar
  12. 12.
    Neagu RC (2006) Report. KTH Solid Mechanics, Royal Institute of Technology, Stockholm, Sweden, p 83Google Scholar
  13. 13.
    Mark RE (1967) Cell wall mechanics of tracheids. Yale University Press, New Haven, p 241Google Scholar
  14. 14.
    Schniewind AP, Barrett JD (1969) Wood Fiber Sci 1:205Google Scholar
  15. 15.
    Mark RE, Gillis PP (1970) Wood Fiber Sci 2:79Google Scholar
  16. 16.
    Mark RE, Gillis PP (1973) TAPPI 56:164Google Scholar
  17. 17.
    Page DH, El-Hosseiny F, Winkler K, Lancaster APS (1977) TAPPI 60:114Google Scholar
  18. 18.
    Salmén L, de Ruvo A (1985) Wood Fiber Sci 1985:336Google Scholar
  19. 19.
    Salmén L, Kolseth P, de Ruvo A (1985) J Pulp Pap Sci 11:102Google Scholar
  20. 20.
    Persson K (2000) Doctoral Thesis, Department of Mechanics and Materials, Structural Mechanics. LTH, Lund University, Lund, Sweden, p 213Google Scholar
  21. 21.
    Bergander A, Salmen L (2002) J Mater Sci 37:151. DOI: 10.1023/A:1013115925679Google Scholar
  22. 22.
    Barber NF (1968) Holzforschung 22:97Google Scholar
  23. 23.
    Barrett JD, Schniewind AP (1973) Wood Fiber Sci 5:215Google Scholar
  24. 24.
    Gassan J, Chate A, Bledzki AK (2001) J Mater Sci 36:3715Google Scholar
  25. 25.
    Lekhnitskii SG (1981) Theory of elasticity of an anisotropic body. Mir, MoscowGoogle Scholar
  26. 26.
    Wardrop AB, Preston RD (1947) Nature 160:911Google Scholar
  27. 27.
    Harada H, Côté WA Jr (1985) In: Higuchi T (ed) Biosynthesis and biodegradation of wood components. Academic Press Inc., Orlando, FL, USA, p 679Google Scholar
  28. 28.
    Brändström J (2002) Doctoral thesis, Department of Wood Science, Acta Universitatis agriculturae Sueciae, Silvestria vol 237 SLU, Uppsala, p 39Google Scholar
  29. 29.
    Panshin AJ, de Zeeuw C (1980) Textbook of wood technology. McGraw-Hill, New YorkGoogle Scholar
  30. 30.
    Fengel D (1970) TAPPI 53:497Google Scholar
  31. 31.
    Fahlén J, Salmén L (2003) J Mater Sci 38:119Google Scholar
  32. 32.
    Salmén L, Olsson AM (1998) J Pulp Pap Sci 24:99Google Scholar
  33. 33.
    Kerr AJ, Goring DAI (1975) Cell Chem Technol 9:563Google Scholar
  34. 34.
    Meylan BA, Butterfield BG (1978) Wood Sci Technol 12:219Google Scholar
  35. 35.
    Brändström J, Bardage SL, Daniel G, Nilsson T (2003) IAWA J 24:27Google Scholar
  36. 36.
    Bergander A, Brändström J, Daniel G, Salmén L (2002) J Wood Sci 48:255Google Scholar
  37. 37.
    Abe H, Ohtani J, Fukazawa K (1992) IAWA Bull New Ser 13:411Google Scholar
  38. 38.
    Abe H, Funada R (2005) IAWA J 26:161Google Scholar
  39. 39.
    Abe H, Ohtani J, Fukazawa K (1991) IAWA Bull New Ser 12:431Google Scholar
  40. 40.
    Fengel D (1972) Holzforschung 26:1Google Scholar
  41. 41.
    Fernando D, Daniel G (2004) Nord Pulp Pap Res J 19:278Google Scholar
  42. 42.
    Brändström J (2001) IAWA J 22:333Google Scholar
  43. 43.
    Fengel D (1969) Wood Sci Technol 3:203Google Scholar
  44. 44.
    Fengel D, Stoll M (1973) Holzforschung 27:1Google Scholar
  45. 45.
    Kollman FFP, Côté WA (1968) Principles of wood science and technology. 1. Solid wood. Springer-Verlag, Berlin, GermanyGoogle Scholar
  46. 46.
    Keckes J, Burgert I, Fruhmann K, Muller M, Kolln K, Hamilton M, Burghammer M, Roth SV, Stanzl-Tschegg S, Fratzl P (2003) Nature Mater 2:810Google Scholar
  47. 47.
    Booker RE, Sell J (1998) Holz Roh Werkst 56:1Google Scholar
  48. 48.
    Åkerholm M, Salmén L (2003) Holzforschung 57:459Google Scholar
  49. 49.
    Sakurada I, Nukushina Y, Ito T (1962) J Polym Sci 57:651Google Scholar
  50. 50.
    Cousins WJ (1976) Wood Sci Technol 10:9Google Scholar
  51. 51.
    Cousins WJ (1978) Wood Sci Technol 12:161Google Scholar
  52. 52.
    Tashiro K, Kobayashi M (1991) Polymer 32:1516Google Scholar
  53. 53.
    Nakamura KI, Wada M, Kuga S, Okano T (2004) J Polym Sci Pol Phys 42:1206Google Scholar
  54. 54.
    Cave ID (1978) Wood Sci Technol 12:75Google Scholar
  55. 55.
    Neumann S, Marom G (1986) J Mater Sci 21:26Google Scholar
  56. 56.
    Bahar LY (1975) J Franklin I 299:33Google Scholar
  57. 57.
    Wang J, Fang S (1999) Mech Res Commun 26:673Google Scholar
  58. 58.
    Agarwal BD, Broutman LJ (1990) Analysis and performance of fiber composites. John Wiley & Sons, Inc., New YorkGoogle Scholar
  59. 59.
    El-Hosseiny F, Page DH (1975) Fibre Sci Technol 8:21Google Scholar
  60. 60.
    Page DH, El-Hosseiny F (1983) J Pulp Pap Sci 9:TR 99Google Scholar
  61. 61.
    Christensen RM (2001) In: Aref H, Philips JW (eds) Mechanics for a new millenium. Kluwer Academic Publishers, Neherlands, p 25Google Scholar
  62. 62.
    Hashin Z, Rosen BW (1964) J Appl Mech 31:223Google Scholar
  63. 63.
    Hashin Z (1979) J Appl Mech 46:543Google Scholar
  64. 64.
    Christensen RM, Lo KH (1979) J Mech Phys Solids 27:315Google Scholar
  65. 65.
    Hervé E, Zaoui A (1995) Int J Eng Sci 33:1419Google Scholar
  66. 66.
    Hashin Z (1983) J Appl Mech 50:481Google Scholar
  67. 67.
    Marklund E (2005) Licentiate thesis, Department of Applied Physics and Mechanical Engineering, Division of Polymer Engineering. Luleå University of Technology, Luleå, SwedenGoogle Scholar
  68. 68.
    Chouchaoui CS, Ochoa OO (1999) Compos Struct 44:221Google Scholar
  69. 69.
    Xia M, Takayanagi H, Kemmochi K (2001) Compos Struct 53:483Google Scholar
  70. 70.
    Byron Pipes R, Hubert P (2002) Compos Sci Technol 62:419Google Scholar
  71. 71.
    Byron Pipes R, Hubert P (2003) Compos Sci Technol 63:1571Google Scholar
  72. 72.
    Neagu RC, Gamstedt EK, Lindström M (2006) In: Salmén L (ed) 5th Plant biomechanics conference. STFI-Packforsk AB, Stockholm, Sweden, in pressGoogle Scholar
  73. 73.
    Jayne BA (1959) TAPPI 42:461Google Scholar
  74. 74.
    Jentzen CA (1964) TAPPI 47:412Google Scholar
  75. 75.
    Leopold B (1966) TAPPI 49:315Google Scholar
  76. 76.
    Spiegelberg HL (1966) TAPPI 49:388Google Scholar
  77. 77.
    Kersavage PC (1973) Wood Fiber Sci 5:105Google Scholar
  78. 78.
    Groom LH, Mott L, Shaler SM (2002) Wood Fiber Sci 34:14Google Scholar
  79. 79.
    Mott L, Groom LH, Shaler SM (2002) Wood Fiber Sci 34:221Google Scholar
  80. 80.
    Duncker B, Nordman L (1968) Sven Papperstidn 71:165Google Scholar
  81. 81.
    de Ruvo A, Lundberg R, Martin-Löf S, Söremark C (1976) In: Bolam F (ed) The fundamental properties of paper related to its uses, Transactions of the symposium 1973. British Paper and Board Makers’ Association, London, p 785Google Scholar
  82. 82.
    Kolseth P, Ehrnrooth EML (1986) In: Bristow JA, Kolseth P (eds) Paper structure and properties. Marcel Dekker Inc., New York, p 27Google Scholar
  83. 83.
    Wallström L, Lindberg KAH, Johansson I (1995) Holz Roh Werkst 53:87Google Scholar
  84. 84.
    Meylan BA (1972) Wood Sci Technol 6:293Google Scholar
  85. 85.
    Schulgasser K, Witztum A (2004) J Theor Biol 230:281Google Scholar
  86. 86.
    Schulgasser K (1987) In: Proceedings of the international paper physics conference, Quebec, edited by p 53Google Scholar
  87. 87.
    Wilhelmsson D, Neagu RC, Bardage SL, Gamstedt EK (2006) In: Salmén L (ed) 5th Plant biomechanics conference. STFI-Packforsk AB, Stockholm, Sweden, in pressGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.New Materials and CompositesSTFI-Packforsk ABStockholmSweden
  2. 2.KTH Solid Mechanics, School of Engineering ScienceRoyal Institute of Technology (KTH)StockholmSweden

Personalised recommendations