Journal of Materials Science

, Volume 42, Issue 15, pp 6347–6352 | Cite as

Effects of emulsion sizing with nano-SiO2 on interfacial properties of carbon fibers/epoxy composites

  • Yu YangEmail author
  • Chunxiang Lu
  • Xiaolei Su
  • Xinkui Wang


Nano-SiO2 particles were used to modify epoxy emulsion sizing of carbon fibers to improve the interfacial properties of carbon fibers reinforced epoxy composites. The mechanical interfacial strength between fibers and matrix was investigated by the single fiber fragmentation test and the 3-point short beam shear test, respectively. Dynamic contact angle analysis (DCAA), X-ray photoelectron spectrometry (XPS) and atomic force microscopy (AFM) were performed on the carbon fibers with unmodified sizing and nano-SiO2 modified sizing. The results indicated that modified sizing with nano-SiO2 slightly increased the surface energy, the hydroxyl functional group and the surface roughness of carbon fibers compared to unmodified sizing, so that the interfacial shear strength (IFSS) of the single fiber composites and the interlaminar shear strength (ILSS) of composites were enhanced. SEM images of fracture sections of composites proved powerfully that the interfacial adhesion between fibers and matrix was improved after nano-SiO2 modified emulsion sizing treatment.


Carbon Fiber Fiber Surface Modify Sizing Interlaminar Shear Strength Fracture Section 


  1. 1.
    Drzal LT (1990) Vacuum 41:1615CrossRefGoogle Scholar
  2. 2.
    Ho H, Drzal LT (1996) Compos Part A 27:961CrossRefGoogle Scholar
  3. 3.
    Kang HM, Yoon TH, Bump M, Riffle JS (2001) J Appl Polym Sci 79:1042CrossRefGoogle Scholar
  4. 4.
    Walker L, Sohn MS, Hu XZ (2002) Compos Part A 33:893CrossRefGoogle Scholar
  5. 5.
    Huang YD, Liu L, Qiu JH, Shao L (2002) Compos Sci Tech 62:2153CrossRefGoogle Scholar
  6. 6.
    Kaynak C, Orgun O, Tincer T (2005) Polym Test 24:455CrossRefGoogle Scholar
  7. 7.
    Weitzsacker CL, Xie M, Drzal LT (1997) Surf Int Anal 25:53CrossRefGoogle Scholar
  8. 8.
    Berg J, Jones FR (1998) Compos Part A 29:1261CrossRefGoogle Scholar
  9. 9.
    Broyles NS, Verghese KNE, Davis SV, Li H, Davis RM, Lesko JJ, Riffle JS (1998) Polymer 39:3417CrossRefGoogle Scholar
  10. 10.
    Yumitori S, Wang D, Jones FR (1994) Composites 25:698CrossRefGoogle Scholar
  11. 11.
    Broyles NS, Chan R, Davis RM, Lesko JJ, Riffle JS (1998) Polymer 39:2607CrossRefGoogle Scholar
  12. 12.
    Drzal LT, Madhukar M, Waterbury MC (1994) Compos Struct 27:65CrossRefGoogle Scholar
  13. 13.
    Dilsiz N, Wightman JP (1999) Carbon 37:1105CrossRefGoogle Scholar
  14. 14.
    Cheng TH, Zhang J, Yumitori S, Jones FR, Anderson CW (1994) Composites 25:661CrossRefGoogle Scholar
  15. 15.
    Meguid SA, Sun Y (2004) Mater Des 25:289CrossRefGoogle Scholar
  16. 16.
    Gadkaree KP (1992) J Mater Sci 27:3827. DOI: 10.1007/BF00545465CrossRefGoogle Scholar
  17. 17.
    Hussian M, Nakahira A, Niihara KM (1996) Mater Lett 26:185CrossRefGoogle Scholar
  18. 18.
    Su FH, Zhang ZZ, Liu WM (2005) Mater Sci Eng A 392:359CrossRefGoogle Scholar
  19. 19.
    Zhang ZZ, Su FH, Wang K, Jiang W, Men XH, Liu WM (2005) Mater Sci Eng A 404:251CrossRefGoogle Scholar
  20. 20.
    Kelley A, Tyson WRV (1965) J Mech Phys Solids 13:329CrossRefGoogle Scholar
  21. 21.
    Herrera-Franco PJ, Drzal LT (1992) Composites 23:2CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Yu Yang
    • 1
    • 2
    Email author
  • Chunxiang Lu
    • 1
  • Xiaolei Su
    • 1
    • 2
  • Xinkui Wang
    • 1
  1. 1.Key Laboratory of Carbon MaterialsInstitute of Coal Chemistry, Chinese Academy of SciencesTaiyuanP.R. China
  2. 2.Graduate University of the Chinese Academy of ScienceBeijingP.R. China

Personalised recommendations